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Abstract 

Safety researchers and analysists have employed land use and urban form variables as surrogates for 

traffic exposure information (pedestrian and bicyclist volumes and vehicular traffic). The quality of these 

crash prediction models is affected by the lack of “true” non-motorized exposure data. The current 

research effort is focused on developing a transportation planning simulation framework to generate 

exposure information for crash prediction models. Specifically, the research effort is focused on evaluating 

non-motorist exposure measures in terms of demand at a planning level. The evaluated exposure 

measures are incorporated in examining non-motorist safety, which would allow us to devise more 

evidence-based policy implications for improving overall safety and activities related to non-motorized 

modes of travel. The proposed research approach recognizes that non-motorized safety is affected by 

vehicular volumes and non-motorized activity at a macro-level in the urban region. The vehicular and non-

motorized exposure measures are generated to enhance the vulnerable road user crash prediction 

models. In identifying non-motorist exposure measures, we develop aggregate-level demand models to 

identify critical factors contributing to non-motorist generators and attractors at a zonal level. In 

evaluating non-motorist safety, we estimate four different aggregate level models: (1) zonal-level crash 

count model for examining pedestrian-motor vehicle crash occurrences, (2) zonal-level crash count model 

for examining bicycle-motor vehicle crash occurrences, (3) zonal-level crash severity model for examining 

pedestrian crash injury severity by proportions, and (4) zonal-level crash severity model for examining 

bicycle crash injury severity by proportions. These models are estimated as a function of zonal level 

sociodemographic characteristics, roadway/traffic attributes, built environment, land-use characteristics, 

and exposure measures identified from demand models. The formulated demand models are estimated 

by using 2009 National Household Travel Survey data and the crash models are estimated by using the 

Signal Four Analytics crash database for the year 2010 for the Central Florida region. Model estimation 

results are further augmented by a validation exercise. To demonstrate the implication of the estimated 

models, we also perform policy analysis for ten different scenarios, including changes in traffic volume 

within the vicinity of central business district, reduction in zonal-level speed limit, increasing walking 

facilities, and restrictions on the number of traffic lanes. From the policy scenario analysis, we identify 

beneficial changes to existing infrastructure and traffic operation for improving non-motorized road user 

safety at a planning level. The research methodology as proposed in our study recognizes that zonal-level 

attributes are likely to influence non-motorist exposure. At the same time, non-motorist exposure along 

with the zonal-level attributes are critical factors in developing non-motorist safety models. 
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1 Introduction 

Urban regions in North America are encouraging the adoption of active modes of transportation 

by proactively developing infrastructure for non-motorized modes. According to data from the 

2009 National Household Travel Survey (NHTS), about 37.6% of the trips by private vehicles in the 

United States (US) are less than 2 miles long. If even a small proportion of the shorter private 

vehicle trips (around dense urban cores) are substituted with active transportation trips, there 

are substantial benefits to individuals, cities and the environment. However, a strong impediment 

to the increasing adoption of active modes of transportation is the risk associated with these 

modes. The safety risk posed to active transportation users in Florida is exacerbated compared to 

active transportation users in the rest of the US. While the national average for pedestrian 

(bicyclist) fatalities per 100,000 population in 2015 is 1.67 (2.50), the corresponding number for 

the state of Florida is 3.10 (7.40), which clearly demonstrates the challenges faced in Florida 

(NHTSA 2017a, b). An important tool for determining the critical factors affecting the occurrence 

of pedestrian and bicycle crashes and identifying vulnerable locations is the application of 

planning-level crash prediction models.  

Traditionally, in developing these models, safety researchers and analysists have employed land 

use and urban form variables as surrogates for exposure information (pedestrian and bicyclist 

volumes and vehicular traffic). The quality of these crash prediction models is affected by the lack 

of “true” non-motorized exposure data. Moreover, to assess the implication of different strategies 

in improving non-motorized safety, it is important to evaluate and document demand of non-

motorized road users. The current research effort is focused on developing a transportation 

planning simulation framework to generate exposure information for crash prediction models. 

Specifically, the current research effort is focused on evaluating non-motorist exposure measures 

in terms of demand at a planning level. The evaluated exposure measures are further 

incorporated in examining non-motorist safety, which would allow us to devise more evidence-

based policy implications for improving overall safety and activities related to non-motorized 

modes of travel. 

1.1 Research Methodology 

The proposed research approach recognizes that non-motorized safety is affected by vehicular 

volumes and non-motorized activity at a macro-level in the urban region. The vehicular and non-

motorized exposure measures are generated to enhance the vulnerable road user crash 

prediction models. The details of the methodology are discussed below. 

In identifying non-motorist exposure measures, we develop aggregate-level demand models to 

identify critical factors contributing to non-motorist’s generators and attractors at a zonal level. 

Specifically, in our current study, we investigate non-motorist demand at a zonal level by using 

aggregate trip information based on origin and destination locations of trips. Further, we also 

estimate a pedestrian destination choice model and a bicycle destination choice model, which 

would allow us to micro-simulate aggregate-level non-motorist travel demand in the form of 

detailed origin-destination (O-D) matrices. The demand model would allow us to identify the 

number of non-motorists at a zonal level, while the destination choice models would allow us to 

identify the location of non-motorist activities. These models are estimated as a function of zonal-

level sociodemographic characteristics, roadway/traffic attributes, built environment and land-
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use characteristics. In evaluating non-motorist exposure, we also generate different zonal-level 

trip exposure matrices with the numbers of daily trip origin and daily trip destination at the zonal 

level for both pedestrian and bicycle modes to be considered as non-motorist exposure measures 

for safety evaluation. 

In evaluating non-motorist safety, in this research effort, we estimate four different aggregate 

level models: (1) a zonal-level crash count model for examining pedestrian-motor vehicle crash 

occurrences, (2) a zonal-level crash count model for examining bicycle-motor vehicle crash 

occurrences, (3) a zonal-level crash severity model for examining pedestrian crash injury severity 

by proportions and (4) a zonal-level crash severity model for examining bicycle crash injury 

severity by proportions. These models are estimated as a function of zonal-level 

sociodemographic characteristics, roadway/traffic attributes, built environment, land-use 

characteristics and exposure measures identified from demand models. The outcomes of these 

macro-level models can be used to devise safety-conscious decision support tools to facilitate a 

proactive approach in assessing medium- and long-term policy-based countermeasures. 

Moreover, the tool plays an important role in safety implications of land use planning initiatives 

and alternate network-planning initiatives.  

The research methodology as proposed in our study recognizes that zonal-level attributes are 

likely to influence non-motorist exposure. At the same time, non-motorist exposure along with 

the zonal-level attributes are critical factors in developing non-motorist safety models. This 

intertwined relationship and our research road map is represented in Figure 1.1. 

 

Figure 1.1 – Proposed non-motorist safety evaluation framework 

1.2 Study Area 

Our study areas include the Central Florida region. Specifically, we consider the region defined for 

Central Florida Regional Planning Model version 6.0 (CFRPM 6.0). The study area includes 4,747 

traffic analysis zones (TAZs). Boundary of the study area encompasses nine counties (Brevard, 

Flagler, Lake, Marion, Orange, Osceola, Seminole, Sumter and Volusia) within District 5, Polk 
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county within District 1 and part of Indian River county in District 4 of the Florida Department of 

Transportation (FDOT). The location study area along with the zonal boundaries are shown in 

Figure 1.2. For estimating models, we consider the year 2010 as the base year. 

 

 

Figure 1.2 – Location of study region 

 

1.3 Outline of the Report 

The remainder of the document is structured as follows: 

 Section 2 contributes to non-motorized road user exposure evaluation. 

 Section 3 presents non-motorized road user safety evaluation. 

 Section 4 contributes to policy scenario analysis and recommendations. 

 Section 5 concludes the report by summarizing the findings and describing 

limitations. 
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2 Non-Motorized Road User Exposure Evaluation 

In evaluating non-motorized road user safety, studies often do not consider non-motorized 

exposure in detail. However, non-motorist exposure is likely to have a significant influence on the 

safety of this group of road users. Further, with growing emphasis on improving mobility in the 

Florida region, there is increasing awareness and targeted efforts to enhance non-motorized 

(pedestrian and bicyclist) mobility. To evaluate the effectiveness of these strategies and to 

enhance safety, it is useful to develop methods that accommodate the potential adoption of non-

motorized modes within the mobility planning process. In order to assess the implication of 

different strategies in improving non-motorized safety, it is important to evaluate and document 

the demand of non-motorized road users. Analysts often develop a non-motorist demand model 

at different local levels, such as regional level, corridor or sub-area level and household/individual 

level. Among these models, analysis is widely conducted to evaluate non-motorized travel at a 

zonal level. Several high-resolution modeling frameworks, such as an activity-based or trip-based 

approach, could be pursued for evaluating planning-level non-motorist demand. However, it is 

worthwhile to mention here that high-resolution disaggregate-level data of non-motorist activity 

is still unavailable or available only for few locations at a corridor level. Extrapolating planning-

level non-motorist demand from a few corridor-level exposure data would require several 

assumptions along with a higher level of computational burden. An alternative approach to 

generating a planning-level non-motorist demand model is to estimate O-D demand at an 

aggregate level. 

The aggregate-level demand models examine critical factors contributing to non-motorist 

generators and attractors at a zonal level. Outcomes of these studies can be used to devise 

medium- or long-term area-wide planning and investment policies to encourage and promote 

non-motorized activities and to improve safety situations for these groups of road users. 

Moreover, these models can be used as a tool for evaluating non-motorized transportation pilot 

projects. To that extent, in our current study, we investigate non-motorist demand at a zonal level 

by using aggregate trip information based on origin and destination locations of trips. Specifically, 

we develop four non-motorist demand models: (1) pedestrian generator model – based on zonal-

level pedestrian origin demand, (2) pedestrian attractor model – based on zonal-level pedestrian 

destination demand, (3) bicycle generator model – based on zonal-level bicycle origin demand, 

and (4) bicycle attractor model – based on zonal-level bicycle destination demand. Further, we 

also estimate the pedestrian destination choice model and the bicycle destination choice model, 

which would allow us to micro-simulate aggregate-level non-motorist travel demand in the form 

of detailed O-D matrices. The demand model would allow us to identify the number of non-

motorists at a zonal level, while the destination choice models would allow us to identify the 

location of non-motorist activities. These models are estimated for the study area defined by the 

CFRPM 6.0 area by using trip records from the 2009 NHTS database. In the following section, we 

have presented and discussed estimation results of these models along with data compilation 

procedures. Further, we also present the validation results of these estimated models. 

2.1 Data Source 

For developing non-motorist demand and destination choice models, the data is sourced from 

the 2009 NHTS database gathered in the United States. The 2009 NHTS collected detailed 

information on more than one million trips undertaken by 320,000 individuals from 150,000 
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households sampled from all over the country. The database includes information on mode taken 

by trip makers for each trip, trip purpose and trip location, along with the trip maker’s 

characteristics, household characteristics and trip characteristics. The 2009 NHTS database from 

FDOT with add-ons allowed us to identify trips which were recorded for the Central Florida region. 

In the 2009 NHTS, there were 2,749 households surveyed in the Central Florida region. It included 

a total of 5,090 individuals and 22,359 trips. Among these trips, walk and bike trip shares were 

8.8 % and 1.3 %, respectively. In the current study context, we incorporate “person-trip weight” 

– as defined in the NHTS database – to extrapolate the representative number of trips for the 

Central Florida region. 

2.2 Non-Motorist Demand Model  

Non-motorist travel demand models are estimated at the zonal level based on information about 

trip origin and destination. Specifically, we estimate four different models: (1) pedestrian 

generator model, (2) pedestrian attractor model, (3) bicycle generator model and (4) bicycle 

attractor model. In generator models, we examine the daily zonal trip origin count (total number 

of trips originated at zones) to identify critical factors that are likely to generate non-motorist 

origin demand. On the other hand, in attractor models, we examine the daily zonal trip 

destination count (total number of trip destined to zones) to identify critical factors that are likely 

to generate non-motorist destination demand. In the current research effort, we formulated and 

estimated Hurdle-Negative Binomial (HNB) models for examining non-motorist travel demand to 

account for the large share of zones with zero non-motorized activity. The HNB models are 

estimated at the TAZ level for the CFRPM 6.0 area employing a comprehensive set of exogenous 

variables. Based on the model results, we identify important exogenous variables that influence 

pedestrian and bicycle O-D demand. 

2.2.1 Model Framework 

In our current research effort, the non-motorist O-D demands are examined by using the Hurdle 

count regression approach. The non-motorist demands are represented as the total number of 

non-motorist trips originated and destined to a zone. Thus, the demands are non-negative integer 

values. Naturally, these integer counts can be examined by employing count regression 

approaches, such as the Poisson and Negative Binomial (NB) regression approaches. However, for 

the zonal-level non-motorist trip counts, more than 84% and 96% TAZs have zero pedestrian and 

bicycle trip records, respectively. The traditional count models (Poisson and NB models) do not 

account for such over-representation of zero observations in the data. The Hurdle model is 

typically used in the presence of such excess zeroes. Cameron and Trivedi [1] presented these 

models as finite mixture models with a degenerate distribution and probability mass concentrated 

at zeroes. The Hurdle approach is generally used for modeling excess sampling zeroes. It is usually 

interpreted as a two-part model [2]: the first part is a binary response structure modeling the 

probability of crossing the hurdle of zeroes for the response and the second part is a zero-

truncated formulation modeled in the form of standard count models (Poisson or NB). Thus, the 

probability expression for the Hurdle model can be expressed as: 

Λi[yi] = { 

πi yi = 0

(1−πi )

(1−e−μi)
Pi(yi) yi > 0

  (2.1) 
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where 𝑖 is the index for TAZ (𝑖 = 1,2,3, … , 𝑁) and 𝑦𝑖  is the index for non-motorist (pedestrian 

and bicycle) trips occurring daily in a TAZ 𝑖. 

In Equation 2.1, 𝜋𝑖 is the probability of zero trip count and is modeled as a binary logit model as 

follows: 

𝜋𝑖 =
𝑒𝑥𝑝(𝛾𝜼𝑖)

1+𝑒𝑥𝑝(𝛾𝜼𝑖)
 (2.2) 

where 𝜼𝑖  is a vector of attributes and 𝛾 is a conformable parameter vector to be estimated. 

𝑃𝑖(𝑦𝑖) in Equation 2.1 can be presented as Poisson and NB expressions in forming Hurdle Poisson 

(HP) and HNB regression models, respectively. Given the setup as presented in Equation 2.1, the 

probability distribution for Poisson can be written as: 

𝑃𝑖(𝑦𝑖|𝜇𝑖) =
𝑒−𝜇𝑖(𝜇𝑖)𝑦𝑖

𝑦𝑖!
, 𝜇𝑖 > 0 (2.3) 

where 𝜇𝑖  is the expected number of daily trips non-motorists are making in TAZ 𝑖.  

We can express 𝜇𝑖  as a function of explanatory variable (𝒛𝑖) by using a log-link function as 𝜇𝑖 =

𝐸(𝑦𝑖|𝒛𝑖) = 𝑒𝑥𝑝(𝜹𝒛𝑖), where 𝜹 is a vector of parameters to be estimated. However, one of the 

most restrictive assumptions of Poisson regression, often violated, is that the conditional mean is 

equal to the conditional variance of the dependent variable. 

The variance assumption of Poisson regression is relaxed in NB by adding a Gamma distributed 

disturbance term to Poisson distributed count data [3]. Given the above setup, the NB probability 

expression for 𝒚𝒊 can be written as: 

𝑃𝑖(𝑦𝑖|, 𝜇𝑖,𝛼) =  
Γ(𝑦𝑖+𝛼−1)

Γ(𝑦𝑖+1)Γ(𝛼−1)
(

1

1+𝛼𝜇𝑖
)

1

𝛼
(1 −

1

1+𝛼𝜇𝑖
)

𝑦𝑖
 (2.4) 

where Γ(∙) is the Gamma function and 𝛼 is the NB dispersion parameter.  

Finally, the weighted log-likelihood function for the Hurdle count model can be written as: 

𝐿𝐿 = 𝑤𝑖 ∗ { 

𝑙𝑛 (𝜋𝑖) 𝑦𝑖 = 0

ln (
(1−𝜋𝑖)

(1−𝑒−𝜇𝑖)
𝑃𝑖(𝑦𝑖)) 𝑦𝑖 > 0

  (2.5) 

The daily trip weight at the zonal level is generated by using the following formulation: 

𝑤𝑖 = ∑
𝑌𝑒𝑎𝑟𝑙𝑦 𝑝𝑒𝑟𝑠𝑜𝑛 𝑡𝑟𝑖𝑝 𝑤𝑒𝑖𝑔ℎ𝑡

365

𝐽
𝑗=1    (2.6) 

where 𝑗 (𝑗 = 1,2,3, … 𝐽) represents the index for trip.  

The reader should note that in computing the weighting factor, as presented in Equation 2.6, we 

divided the yearly person trip factor, as obtained from NHTS data, by 365 to convert the yearly 

trip count to a daily trip count. Substitution of (𝑃𝑖(𝑦𝑖)) by Equations 2.3 and 2.4 into Equation 2.5 

results in HP and HNB models, respectively. The model presented in Equation 2.5 is estimated by 

using a maximum likelihood approach. 
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2.2.2 Data Description 

The non-motorist demand model is focused on non-motorist O-D demand at the TAZ level. With 

respect to origin and destination demand, we examine daily zonal trip origin count and daily zonal 

trip destination count, respectively. Table 2.1 offers summary characteristics of these daily trip 

counts for pedestrian and bicycle trip activities based on their trip origin and trip destination along 

with the number of zones with sample characteristics. From Table 2.1, we can see that number of 

zones with pedestrian demand is much higher than the number of zones with bicycle demand. 

Locations of zones with pedestrian and bicycle O-D demand are shown in Figure 2.1.   

 

Table 2.1 - Summary characteristics of trip counts 

Sample characteristics Frequency (percentage)  

Total number of zones 4747 

Zones with zero pedestrian origin trip counts 4007 (84.4011) 

Zones with pedestrian origin trip counts 740 (15.589) 

Zones with zero pedestrian destination trip counts 4010 (15.53) 

Zones with pedestrian destination trip counts 737 (84.47) 

Zones with zero bicycle origin trip counts 4574 (3.64) 

Zones with bicycle origin trip counts 173 (96.36) 

Zones with zero bicycle destination trip counts 4581 (3.50) 

Zones with bicycle destination trip counts 166 (96.50) 

Variable names Definition 
Zonal (weighted) 

Minimum Maximum Mean 

Dependent variables 

Pedestrian origin trip 

count 

Total daily pedestrian trip 

origin demand at a zone 
0.000 39232.010 265.450 

Pedestrian destination 

trip count 

Total daily pedestrian trip 

destination demand at a 

zone 

0.000 39232.010 261.696 

Bicycle origin trip 

count 

Total daily bicycle trip 

origin demand at a zone 
0.000 7012.434 35.022 

Bicycle destination trip 

count 

Total daily bicycle trip 

destination demand at a 

zone 

0.000 7012.434 34.937 
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 Figure 2.1 - Zones with pedestrian and bicycle O-D demand 

 

In addition to the trip counts, the explanatory attributes considered in the empirical study are also 

aggregated at the TAZ level accordingly. For the empirical analysis, the selected explanatory 

variables can be grouped into four broad categories: sociodemographic characteristics, roadway 

and traffic attributes, built environment and land use characteristics. The sociodemographic 

characteristics are compiled from the U.S. Census Bureau’s Tiger/line data and American 

Community Survey database. Moreover, roadway and traffic attributes, built environment and 

land use characteristics are obtained from the Florida Geographic Data Library and the FDOT data 

repository. Table 2.2 offers a summary of the sample characteristics of the exogenous variables 

and the definition of variables considered for final model estimation along with the zonal 

minimum, maximum and average. 

 

Table 2.2 - Summary characteristics for exogenous variables 

Variable names Definition Zonal 
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Minimum Maximum Mean 

Sociodemographic characteristics 

Population density 
Total number of Population of TAZ/ Area 

of TAZ in acre 
0 19.956 2.366 

Proportion of male 

population 

Total number of male of TAZ/ Total 

number of Population of TAZ 
0 0.998 0.49 

Proportion of 22-29 

aged population  

Total number of population who are 22 

to 29 years old of TAZ/ Total number of 

Population of TAZ 

0 0.397 0.096 

Proportion of 65+ 

aged population 

Total number of people above 65 years 

old of TAZ/ Total number of Population 

of TAZ 

0 0.899 0.182 

Roadway and traffic attributes 

Average zonal speed Average zonal speed in mph 0 70 36.028 

AADT 
Total Annual Average Daily Traffic (AADT) 

of TAZ/10000 
0 27.550 0.931 

Truck AADT Total Truck AADT of TAZ/10000 0 2.747 0.083 

Proportion of 

arterial road 

Total length of arterial road of TAZ/Total 

roadway length of TAZ 
0 1 0.459 

Proportion of 

collector road 

Total length of collector road of 

TAZ/Total roadway length of TAZ 
0 1 0.417 

Proportion of 3 and 

more lane road 

Total length of through roadway with 3 

or more number of lanes of TAZ/Total 

roadway length of TAZ 

0 1 0.096 

Length of sidewalk Total sidewalk length in meter of TAZ 0 36.346 0.280 

Availability of bike 

lane 
Presence of bike lane in TAZ 0 1 0.041 

Number of flashing 

beacon sign 
Total number of flashing beacon of TAZ 0 2 0.009 

Number of school 

signal 
Total number of school signal of TAZ 0 1 0.001 

Built environment  

Number of 

educational center  

Total number of educational center of 

TAZ 
0 5 0.275 

Number of financial 

center  
Total number of financial center of TAZ 0 17 0.586 
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Number of park and 

recreational center  

Total number of park and recreational 

center of TAZ 
0 20 0.245 

Number of 

commercial center 

Total number of commercial center of 

TAZ 
0 4 0.087 

Number of 

entertainment 

center 

Total number of entertainment center of 

TAZ 
0 3 0.017 

Number of 

restaurant 
Total number of restaurant of TAZ 0 36 1.335 

Number of shopping 

center 
Total number of shopping center of TAZ 0 78 1.492 

Number of transit 

hub 
Total number of transit hub of TAZ 0 11 0.051 

Land-use characteristics 

Institutional area Ln (Institutional area in a TAZ in acre) -16.417 7.071 0.785 

Residential area Ln (Residential area in a TAZ in acre) -12.427 8.014 3.596 

Industrial area Ln (Industrial area in a TAZ in acre) -12.943 6.709 0.671 

Recreational area Ln (Recreational area in a TAZ in acre) -13.946 10.04 0.388 

Retail/office area Ln (Office/Retail area in a TAZ in acre) -17.312 6.611 1.744 

Urban area Ln (Urban area in a TAZ in acre) -9.275 8.491 4.291 

Land-use mix 

Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is 

the category of land-use, 𝑝 is the 

proportion of the developed land area 

devoted to a specific land-use, 𝑁  is the 

number of land-use categories in a TAZ 

0 0.929 0.35496 

 

2.2.3 Model Specification and Overall Measures of Fit 

The empirical analysis of non-motorist demand involves the estimation of model using two 

different econometric frameworks: HP and HNB. Prior to discussing the estimation results, we 

compare the performance of these models in this section. To compare the performance of 

estimated models, Bayesian information criterion (BIC) and Akaike information criterion (AIC) 

measures are used. These measures can be computed as follows: 

𝐵𝐼𝐶 =  −2 ln(L) +  K ln(Q)    (2.7) 

 𝐴𝐼𝐶 =  2K − 2ln(L) 

where 𝑙𝑛(𝐿) is the log-likelihood value at convergence, 𝐾 is the number of parameters and 𝑄 is 

the number of observations. 
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The model with the lower BIC and AIC values is the preferred model. The computed BIC and AIC 

values along with the log-likelihood at the convergence and number of parameters estimated for 

all the models are presented in Table 2.3. The BIC (AIC) values for the final specifications of the 

HP and HNB models clearly indicate that the HNB model shows superior fit compared to the HP 

models for all four models. Therefore, in explaining the effect of exogenous variable, we will 

restrict ourselves to the discussion of the HNB models. 

 

Table 2.3 - Fit measures of the estimated demand models 

Models 
Econometric 

framework 

Log-likehood at 

convergence 

Number of 

parameters 
BIC AIC 

Pedestrian 

generator 

model  

HP -933160.513 16 1866456.470 1866353.026 

HNB -845920.147 17 1691984.204 1691874.294 

Pedestrian 

attractor 

model  

HP -924530.467 21 1849238.705 1849102.934 

HNB -835125.469 22 1670437.174 1670294.938 

Bicycle 

generator 

model  

HP -113462.794 15 227052.567 226955.588 

HNB -112380.003 16 224895.451 224792.007 

Bicycle 

attractor 

model  

HP -109786.243 21 219750.256 219614.485 

HNB -109381.323 22 218948.883 218806.647 

 

2.2.4 Pedestrian Trip Demand Models 

Table 2.4 presents the estimation results of the pedestrian generator and attractor models. The 

pedestrian generator model results are presented in 2nd and 3rd columns of Table 2.4 and 

pedestrian attractor model results are presented in 4th and 5th columns of Table 2.4. In the 

Hurdle model, the positive (negative) coefficient in the probabilistic component corresponds to 

increased (decreased) propensity of zero trip events. On the other hand, the positive (negative) 

coefficient in the count component of the Hurdle model corresponds to increased (decreased) 

non-zero trip count events. The final specification of the model was based on removing the 

statistically insignificant variables in a systematic process based on statistical significance (90% 

significance level) and intuitive coefficient effect. In estimating the models, several functional 

forms and variable specifications are explored. The functional form that provided the best result 

is used for the final model specifications and, in Table 2.4, the variable definitions are presented 

based on these final functional forms of variables. The effects of exogenous variables in model 

specifications for both pedestrian generator and attractor models are discussed in this section by 

variable groups. 
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Table 2.4 - Estimation results of pedestrian demand models 

Variable name 

Pedestrian generator 

model 

Pedestrian attractor 

model 

Estimates t-stat Estimates t-stat 

Probabilistic component 

Constant 2.346 55.615 2.319 54.774 

Land-use mix 0.605 8.143 0.539 7.212 

Urban area 0.224 37.315 0.215 35.200 

Number of Household 0.212 27.324 0.228 29.528 

Count component 

Constant -0.217 -27.198 -0.422 -57.616 

Sociodemographic characteristics 

Proportion of 65+ aged population 0.802 62.096 -- -- 

Roadway and traffic attributes 

Average zonal speed -0.008 -59.952 -- -- 

AADT -0.035 -31.141 -0.047 -40.822 

Proportion of arterial road 0.320 53.077 0.255 43.828 

Proportion of 3 and more lane road -0.316 -32.398 -0.420 -39.923 

Length of sidewalk 0.048 48.038 0.030 31.668 

Built environment 

Number of business center -- -- 0.158 10.811 

Number of entertainment center -- -- 0.194 14.437 

Number of financial center -- -- 0.021 17.835 

Number of park and recreational center -- -- 0.099 38.188 

Number of restaurant -- -- -0.022 -27.858 

Number of shopping center -- -- 0.032 46.627 

Number of transit hub -- -- -0.057 -10.832 

Land-use characteristics 

Industrial area -0.029 -22.989 -0.055 -42.162 

Recreational area 0.070 70.274 0.042 38.617 
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Residential area 0.060 57.244 0.062 55.280 

Retail/office area 0.049 40.450 0.037 25.914 

Institutional area 0.126 110.646 0.146 124.131 

Overdispersion parameter 0.917 116.574 0.826 110.526 

 

Probabilistic Component: In the probabilistic component, land-use mix, urban area and number 

of households are found to be significant in both pedestrian generator and attractor models. As 

expected, these variables are positively correlated with the propensity of non-zero pedestrian 

demand. As these variables serve as surrogates for pedestrian activity, it is expected that TAZs 

with higher levels of these variables are likely to be associated with pedestrian generator and 

attractor. 

Count Component: 

Sociodemographic characteristics: With respect to sociodemographic characteristics, from Table 

2.4 we can see that proportion of 65+ aged population is positively associated with pedestrian 

generator, indicating that TAZs with higher number of population aged 65+ have higher 

pedestrian origin demand.  

Roadway and Traffic Attributes: Zones with higher average speed limit of roadways are likely to 

generate less pedestrian origin demand. Annual average daily traffic (AADT) is negatively 

associated with both pedestrian demand components, indicating lower pedestrian activities in 

the zones with higher vehicular traffic. From Table 2.4, we can see that zones with a higher 

proportion of arterial roads are likely to have a higher level of pedestrian activities, both in terms 

of pedestrian activity generation and attraction. A higher proportion of roadways with 3 or more 

lanes is negatively associated with zonal level pedestrian activities. As expected, zones with higher 

sidewalk length are likely to have a higher level of pedestrian activities – both generation and 

attraction. 

Built Environment: Built environment attributes are considered only in pedestrian attractor 

models as these attributes are more likely to attract pedestrians. With respect to built 

environment, we find that higher numbers of business centers, entertainment centers, financial 

centers, park/recreational centers and restaurants are positively associated with pedestrian 

attraction demand. On the other hand, higher numbers of shopping centers and transit hubs are 

found to be negatively associated with pedestrian destination demand at the zonal level. 

Land-Use Characteristics: Land-use characteristics are found to have significant influence in both 

pedestrian generator and attractor demand models. Among different land-use categories, 

industrial area is found to be negatively associated with both pedestrian origin and destination 

demands. All other land-use categories (recreational, residential, retail/office and institutional 

area) are likely to generate higher levels of pedestrian demands. 

2.2.5 Bicycle Trip Demand Model 

Table 2.5 presents the estimation results of the bicycle generator and attractor models. The 

bicycle generator model results are presented in the 2nd and 3rd columns of Table 2.5, and bicycle 
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attractor model results are presented in the 4th and 5th columns of Table 2.5. In the Hurdle 

model, the positive (negative) coefficient in the probabilistic component corresponds to increased 

(decreased) propensity of zero trip events. On the other hand, the positive (negative) coefficient 

in the count component of the Hurdle model corresponds to increased (decreased) non-zero trip 

count events. The final specification of the model was based on removing the statistically 

insignificant variables in a systematic process based on statistical significance (90% significance 

level) and intuitive coefficient effect. In estimating the models, several functional forms and 

variable specifications are explored. The functional form that provided the best result is used for 

the final model specifications and, in Table 2.5, the variable definitions are presented based on 

these final functional forms of variables. The effects of exogenous variables in model 

specifications for both bicycle generator and attractor models are discussed in this section by 

variable groups. 

 

Table 2.5 - Estimation results of bicycle demand models 

Variable name 
Bicycle generator model Bicycle attractor model 

Estimates t-stat Estimates t-stat 

PROBABILISTIC COMPONENT 

Constant -0.197 -3.661 -0.339 -6.208 

Land-use mix 0.596 8.187 0.719 9.832 

Urban area 0.305 38.242 0.300 36.621 

Number of household 0.287 25.106 0.304 26.455 

COUNT COMPONENT 

Constant -2.351 -69.340 -1.974 -70.397 

Sociodemographic characteristics 

Proportion of 65+ aged population -0.546 -12.745 -- -- 

Roadway and traffic attributes 

AADT -0.028 -8.577 -- -- 

Proportion of arterial road 0.095 6.921 0.044 3.473 

Proportion of 3 and more lane road -0.740 -33.999 -1.243 -55.656 

Length of sidewalk 0.052 16.866 0.049 15.968 

Built environment 

Number of commercial center -- -- -0.416 -29.226 

Number of educational center -- -- 0.112 21.645 

Number of entertainment center -- -- 2.941 23.494 
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Number of financial center -- -- -0.144 -43.018 

Number of park and recreational center -- -- 0.339 54.894 

Number of restaurant -- -- 0.225 73.716 

Number of shopping center -- -- -0.098 -36.605 

Number of transit hub -- -- 0.260 23.207 

Land-use characteristics 

Industrial area 0.092 31.510 0.052 17.338 

Recreational area 0.016 6.847 -0.057 -23.155 

Residential area 0.440 82.309 0.361 74.286 

Retail/office area -0.127 -39.940 -0.191 -53.656 

Institutional area 0.041 12.410 0.032 9.903 

Overdispersion parameter 3.081 26.618 6.009 20.365 

 

Probabilistic Component: In the probabilistic component, land-use mix, urban area and number 

of households are found to be significant in both bicycle generator and attractor models. As 

expected, these variables are positively correlated with the propensity of non-zero bicycle 

demand. As these variables serve as surrogates for bicycle activity, it is expected that TAZs with 

higher levels of these variables are likely to be associated with bicycle generator and attractor. 

Count Component: 

Sociodemographic characteristics: With respect to sociodemographic characteristics, from Table 

2.5 we can see that proportion of 65+ aged population is negatively associated with bicycle 

generator, indicating that TAZs with a higher number of population aged 65+ have lower bicycle 

origin demand.  

Roadway and Traffic Attributes: AADT is negatively associated with bicycle generator demand 

component, indicating lower bicycle origin demand in the zones with higher vehicular traffic. From 

Table 2.5, we can see that zones with a higher proportion of arterial roads are likely to have higher 

level of zonal-level bicycle activities, both in terms of bicycle activity generation and attraction. A 

higher proportion of roadways with 3 or more lanes is negatively associated with zonal-level 

bicycle activities. Zones with higher sidewalk lengths are likely to have higher levels of bicycle 

activities – both generation and attraction, perhaps indicating that in Central Florida bicyclists use 

sidewalks as well as roads for biking. 

Built Environment: Built environment attributes are considered only in bicycle attractor models 

as these attributes are more likely to attract bicyclists. With respect to built environment, we find 

that higher numbers of education centers, entertainment centers, park/recreational centers, 

restaurants and transit hubs are positively associated with bicycle attraction demand. On the 
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other hand, higher numbers of commercial centers, financial centers and shopping centers are 

found to be negatively associated with bicycle destination demand at the zonal level. 

2.2.6 Validation Results of Mobility Component 

To demonstrate the predictive performance of the estimated pedestrian and bicycle demand 

models, a validation experiment is also carried out. The most common approach to perform a 

validation exercise for an aggregate-level model is to evaluate the in-sample predictive measures. 

To evaluate the in-sample goodness-of-fit measures, we computed the predicted count events for 

both zero and non-zero events and compared those with the observed values. These measures 

are presented in Table 2.6 below. From Table 2.6 we can see that the error between observed 

and predicted values are marginal, and hence we can argue that the predictive performance of 

the estimated models is reasonable for all four estimated demand models. 

 

Table 2.6 - Predictive performance evaluation 

Models Events Observed Predicted 

Pedestrian generator 

model 

Total zones with zero trip count 4007.00 4006.80 

Total number of zonal trips 1260090.60 1255479.90 

Average zonal trips 265.45 264.48 

Pedestrian attractor 

model 

Total zones with zero trip count 4010.00 4010.49 

Total number of zonal trips 1242270.50 1236690.70 

Average zonal trips 261.70 260.52 

Bicycle generator model 

Total zones with zero trip count 4574.00 4573.82 

Total number of zonal trips 166248.45 165671.36 

Average zonal trips 35.02 34.90 

Bicycle attractor model 

Total zones with zero trip count 4581.00 4581.18 

Total number of zonal trips 165845.77 171959.97 

Average zonal trips 34.94 36.22 

 

2.3 Non-Motorist Destination Choice Model  

In this section, we examine non-motorist destination choice at a trip level to analyze destination 

zone preferences of pedestrians and bicyclists. Specifically, we examine the zonal attributes that 

influence the decision process of non-motorists in identifying destination locations after starting 

a trip from any particular zone. The decision process formulated and employed in the current 

study approach for the non-motorist destination choice is analogous to the destination choice 
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evaluation framework of vehicular demand within the traditional travel demand modeling 

approach. In non-motorist trip destination choice models, given the origin location of trips, a 

quantitative model framework is employed to identify the possible destination of the trips. In 

developing these destination choice models, we explore the influence of built environment, 

roadway and land use characteristics at the potential destinations accessible from the origin on 

the decision process of choosing a destination in a trip. We estimate two different models: (1) 

pedestrian destination choice model, and (2) bicycle destination choice model. These models are 

developed by using a random utility maximization approach where the trip maker chooses the 

destination that offers the highest utility from the universal choice set of the destination zone and 

is estimated as a function of destination zone attributes. The random utility framework employed 

in the current study takes the form of a multinomial logit (MNL) model. The MNL models are 

estimated at the trip level for the CFRPM 6.0 study region employing a comprehensive set of 

exogenous variables. Based on the model results, we identify important exogenous variables that 

influence non-motorist destination preferences. 

2.3.1 Model Framework 

In the current research effort, we assume a random utility-based framework (MNL model) for 

modeling the non-motorist destination choice models (following McFadden [4]). The MNL model 

is widely used in existing transportation literature to study location choice and in related literature 

[5-8]. In this section, we explain the econometric framework of the MNL model employed in the 

current study. 

Let 𝑗 (𝑗 = 1,2,3, … , 𝐽) be the index to represent a destination zone among a set of 𝐶𝑖 alternatives 

of trip 𝑖. Thus, the destination choice takes the familiar discrete outcome formulation as the linear 

function as follows: 

𝑢𝑖𝑗
∗ = (𝜹𝒛𝑖𝑗 + 𝜉𝑖𝑗) (2.8) 

where 𝑢𝑖𝑗
∗  is the latent variable of destination choice for trip 𝑖 with alternative 𝑗.  

Within the traditional random utility maximization-based discrete outcome framework as 

presented in Equation 2.8, trip 𝑖  will have the possibility of a destination in zone 𝑗  if 𝑢𝑖𝑗
∗ >

 max
𝑑=1,2,3,…,𝐽

𝑑≠𝑗

𝑢𝑖𝐽
∗ . 𝒛𝑖𝑗 is a vector of destination zonal attributes corresponding to destination zone 𝑗. 

𝜹 is a vector of coefficients to be estimated. 𝜉𝑖𝑗  is an idiosyncratic error term assumed to be 

identically and independently standard logistic distributed across trip 𝑖 with destination 𝑗. thus, 

the probability of trip 𝑖 representing the destination choice of trip makers takes the typical MNL 

form given by:  

𝑅𝑖𝑗 =
𝑒𝑥𝑝 (𝜹𝒛𝑖𝑗)

∑ 𝑒𝑥𝑝 (𝜹𝒛𝑖𝑗)𝑗∈𝐶𝑖

  (2.9) 

Finally, the weighted log-likelihood function is:      

𝐿𝐿 = 𝜔𝑖 ∗ (∑ 𝐿𝑛(𝑅𝑖𝑗)𝑖 )  (2.10) 

The daily trip weight is generated by using the following formulation: 
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𝜔𝑖 =
𝑌𝑒𝑎𝑟𝑙𝑦 𝑝𝑒𝑟𝑠𝑜𝑛 𝑡𝑟𝑖𝑝 𝑤𝑒𝑖𝑔ℎ𝑡

365
   (2.11) 

The reader should note that in computing the weighting factor, as presented in Equation 2.11, we 

divided the yearly person trip factor, as obtained from NHTS data, by 365 to convert the yearly 

trip count to a daily trip count. All the parameters in the model are estimated by maximizing the 

logarithmic function 𝐿𝐿 presented in Equation 2.10. The maximum likelihood model estimation is 

programmed in the GAUSS matrix programming language. 

2.3.2 Dependent Variable and Data Description 

The non-motorist trip destination choice model is focused on non-motorist destination zonal 

choice. We examine two trip-level destination choices for walk and bike modes by employing a 

random utility-based model. We generate the destination choice set by assuming that people will 

walk up to 2 miles and bike up to 6 miles in a trip. Thus, the destination choice set is identified 

based on generating a 2-mile and 6-mile buffer around the trip origin location for pedestrian and 

bike trips, respectively. However, on any occasion, if non-motorists walk or bike beyond these 

limits, we accommodate those alternatives in our choice set as well. Thus, the associated data 

records for pedestrian destination choice model are identified to be 56,223 with 1895 trips 

(unweighted). At the same time, the associated data records for the bicycle destination choice 

model are identified to be 39,585 with 276 trips (unweighted).  

In the current research effort, the destination choice models for non-motorist trips are examined 

by considering the zonal attributes of the identified destination zones. Table 2.7 offers a summary 

of the sample characteristics of the exogenous factors in the final estimation dataset for the 

pedestrian and bicycle destination models. For the empirical analysis, the selected explanatory 

variables can be grouped into four broad categories: sociodemographic characteristics, roadway 

and traffic attributes, built environment and land use characteristics. The table represents the 

definition of variables considered for final model estimation along with the zonal minimum, 

maximum and average values. It is worthwhile to mention here that in our destination choice 

model specifications we did not consider person-level or trip-level attributes. One of the major 

objectives for developing the destination choice models is to forecast and/or evaluate policy 

implications for the future year considering real-world changes. However, for such analysis by 

employing destination choice models with person- and trip-level attributes would require 

scenario-level person and trip attributes for the future year, which are not readily available. 

Therefore, we examine the destination choice of non-motorists by employing zonal-level 

attributes only. 

 

Table 2.7 – Summary characteristics for destination choice models 

Variable name Description 
Pedestrian Bicycle 

Mean Mean 

Sociodemographic characteristics 

Population density Total number of Population of 

TAZ/ Area of TAZ in acre 

3.197 3.301 
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Proportion of 22-29 aged 

population 

Total number of population who 

are 22 to 29 years old of TAZ/ 

Total number of Population of TAZ 

0.056 0.108 

Proportion of people aged 18 to 

21 

Total number of population who 

are 18 to 21 years old of TAZ/ 

Total number of Population of TAZ 

--- --- 

Proportion of people aged 65+ Total number of people above 65 

years old of TAZ/ Total number of 

Population of TAZ 

0.193 --- 

Roadway and traffic attributes  

Length of bike lane Total bike length in meter of TAZ --- 0.310 

Average zonal speed Mean maximum speed in mph 34.579 35.646 

Traffic signal Number of traffic signal in TAZ 0.479 --- 

AADT Total Annual Average Daily Traffic 

(AADT) of TAZ/10000 

1.095 --- 

Truck AADT Total Truck AADT of TAZ/10000 0.089 --- 

Built environment  

Number of commercial center Total number of commercial 

center of TAZ 

0.084 0.096 

Number of educational center Total number of educational 

center of TAZ 

0.330 0.387 

Number of financial center Total number of financial center 

of TAZ 

0.771 0.844 

Number of restaurant Total number of restaurant of TAZ 1.690 2.020 

Number of shopping center Total number of shopping center 

of TAZ 

1.783 2.120 

Number of transit hub Total number of transit hub of 

TAZ 

0.056 0.069 

Land-use Characteristics  

Urban area Ln (Urban area in a TAZ in acre) 4.950 4.955 

Residential area Ln (Residential area in a TAZ in 

acre) 

3.590 3.670 

Industrial area Ln (Industrial area in a TAZ in 

acre) 

0.586 0.683 

Recreational area Ln (Recreational area in a TAZ in 

acre) 

0.404 0.344 



 

 

           20 
Enhancing Non-Motorized Safety by Simulating Non-Motorized Exposure using a 

Transportation Planning Approach 

Institutional area Ln (Institutional area in a TAZ in 

acre) 

0.813 0.897 

Retail/Office area Ln (Office/Retail area in a TAZ in 

acre) 

1.856 1.970 

 

The final specification of the model development was based on removing the statistically 

insignificant variables in a systematic process based on statistical significance (90% significance 

level). The specification process was also guided by prior research and parsimony considerations. 

In estimating the models, several functional forms and variable specifications were explored. The 

functional form that provided the best result was used for the final model specifications and, in 

Table 2.7, the variable definitions are presented based on these final functional forms. 

2.3.3 Estimation Results 

Table 2.8 presents the estimation results of the pedestrian and bicycle destination choice models. 

The pedestrian destination choice model results are presented in the 2nd and 3rd columns of 

Table 2.8, and the bicycle destination choice model results are presented in the 4th and 5th 

columns of Table 2.5. In the MNL model, the positive (negative) coefficient corresponds to 

increased (decreased) likelihood of destination choice. The effects of exogenous variables in 

model specifications for both the pedestrian and bicycle destination choice models are discussed 

in this section by variable groups. 

 

Table 2.8 - Estimation results of destination choice models 

Variable name 
Pedestrian Bicycle 

Estimates t-stat Estimates t-stat 

Sociodemographic characteristics 

Population density 0.116 237.353 -0.043 -32.367 

Proportion of 22-29 aged population  ---  ---  2.506 40.419 

Proportion of people aged 18 to 21 -0.148 -7.287 --- --- 

Proportion of people aged 65+ 1.757 182.073 --- --- 

Roadway and traffic attributes 

Length of bike lane --- --- 0.009 12.570 

Average zonal speed -0.001 -9.327 0.010 56.096 

Traffic signal 0.079 66.305 --- --- 

AADT -0.019 -14.721 --- --- 

Truck AADT -0.715 -55.190 --- --- 
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Built environment 

Number of commercial center 0.299 143.347 0.072 13.207 

Number of educational center  0.078 61.863 0.265 91.467 

Number of financial center  0.013 23.002 0.130 87.656 

Number of restaurant 0.044 122.330 -0.054 -44.092 

Number of shopping center -0.003 -13.470 0.010 11.786 

Number of transit hub 0.153 70.265 0.312 80.481 

Land-use Characteristics 

Urban area 0.247 230.929 0.217 92.081 

Residential area 0.147 187.598 0.402 171.613 

Industrial area -0.022 -35.855 -0.119 -82.827 

Recreational area -0.016 -29.005 0.068 49.466 

Institutional area 0.117 178.904 0.025 14.561 

Retail/Office area 0.060 84.343 0.009 5.244 

Log-likelihood at convergence -3705303.725 -750448.472 

 

Sociodemographic Characteristics: From the destination choice model of pedestrian trip, we can 

see that trip makers tend to choose zones as destinations with higher population density as 

highlighted by the positive coefficient of the population density variable in the pedestrian 

destination choice model. On the contrary, as the population density increases at the zonal level, 

it is less likely that bikers choose those zones as destination of their trip. For bike riders, the 

proportion of zonal-level population aged 22-29 years has a positive impact on the destination 

choice utility. For pedestrians, the negative impact associated with the proportion of population 

aged 18-21 years on the likelihood of choosing a zone indicates lower utility. The estimate for 

proportion of population aged 65 and over has a positive coefficient, suggesting that presence of 

more aged population in zones is likely to incur higher utility for pedestrian trip destination.   

Roadway and Traffic Attributes: Several roadway and traffic attributes are found to be significant 

determinants of non-motorist destination choice. As expected, bikers are more likely to choose 

zones in the proximity of trip origin with higher lengths of bike lane. It is surprising to note that 

the effect of average zonal speed has a negative impact on pedestrian destination choice, while 

the variable has a positive impact on the bicycle destination choice model. Pedestrians are likely 

to choose zones that have higher traffic signal density. The zones with higher AADT and truck 

AADT tend to be chosen less as destinations by pedestrians. 

Built Environment: With respect to built environment, the coefficients of number of commercial 

centers, educational centers, financial centers, and transit hubs in both pedestrian and bicycle 

destination choice models demonstrate a higher likelihood of choosing zones with these 
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attributes for non-motorist trips. Number of restaurants has a positive coefficient in the model 

for pedestrians, while the variable has a negative impact on bicycle destination choice. 

Pedestrians are likely to choose destination zones with higher numbers of shopping center, while 

bikers are likely to do the opposite, as indicated by the positive sign of the variable for bikers. 

Land-use Characteristics: From Table 2.8, we can see that different land use characteristics have 

similar effects (other than recreational areas) in both pedestrian and bicycle destination choice 

models. The likelihood of choosing a zone as a destination for a non-motorized trip is higher when 

there are more urbanized, residential, institutional and retail/office areas. With respect to 

industrial area, people are less likely to walk or bike to the zones with more industrial areas. The 

effect of recreational area has opposing signs in pedestrian and bicycle models, indicating lower 

and higher destination choice utility for pedestrians and bikers, respectively.  

2.4 Non-Motorist Trip Exposure Matrices  

In evaluating non-motorist exposure, we also generate different zonal-level trip exposure 

matrices with the number of daily trip origins and daily trip destinations at the zonal level for both 

the pedestrian and bicycle modes. Specifically, four different zonal-level exposure matrices are 

generated: 1) trip O-D demand matrices, 2) trip origin demand matrices, 3) trip destination 

demand matrices and 4) total trip demand matrices. These matrices are generated for pedestrian 

and bicycle modes separately for the 4,747 TAZs in the area defined by the Central Florida region. 

The procedure for generating these matrices along with the summary reports are discussed in this 

section.  

Trip origin-destination (O-D) demand matrices: Zonal-level trip O-D demand matrices are 

generated by using predictions from destination choice models as presented in Section 2.3. 

Specifically, we micro-simulate and assign the total number of trips originated in different zones 

to different destination zones by using the estimated probability shares identified from the 

destination choice models. Thus, the dimension of the generated O-D demand matrices are 

[4747 × 4747] with origin zones in the rows, destination zones in the column and the number of 

trips destined across different zones in each cell. The O-D demand matrices are generated for 

pedestrian and bicycle modes separately. For brevity, we present a snapshot of the O-D demand 

matrices in Table 2.9. 

 

Table 2.9 – Trip O-D matrices example 

Pedestrian 

Origin 

TAZ 

Destination TAZ 

1 2 3 4 5 6 7 8 9 10 … 13 

1 169.52 0 0 0 0 0 0 0 0 0 … 365.06 

2 0 0 0 0 0 0 0 0 0 0 … 0 

3 8.15 9.35 3.56 7.94 0 0 0 0 0 0 … 17.56 

4 0 0 0 0 0 0 0 0 0 0 … 0 
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5 0 0 0 0 0 0 0 0 0 0 … 0 

6 0 0 0 0 0 0 0 0 0 0 … 0 

7 0 0 0 0 0 0 0 0 0 0 … 0 

8 0 0 0 0 0 0 0 0 0 0 … 0 

9 0 0 0 0 0 0 0 0 0 0 … 0 

10 0 0 0 0 0 0 0 0 0 0 … 0 

… … … … … … … … … … … … 0 

13 172.17 0 0 0 0 0 0 0 0 0 0 370.77 

Bicycle 

Origin 

TAZ 

Destination TAZ 

1 2 3 4 … 13 14 15 16 17 18 19 

1 0 0 0 0 … 0 0 0 0 0 0 0 

… … … … … … … … … … … … … 

62 18.43 8.29 2.06 9.32 … 26.22 4.28 0.93 0.51 2.22 3.2 1.96 

… … … … … … … … … … … … … 

70 33.54 15.09 0 0 … 47.71 7.79 1.7 0.92 4.04 0 0 

… … … … … … … … … … … … … 

77 0 0 0 0 … 23.82 0 0 0 0 0 0 

… … … … … … … … … … … … … 

109 0 0 0 0 … 0 0 0 0 0 0 0 

… … … … … … … … … … … … … 

112 0 0 0 0 … 0 0 0 0 0 0 0 

 

Trip origin demand matrices: Zonal-level trip origin demand matrices are computed by using 

predictions from non-motorist generator models as presented in Section 2.2, which are further 

used to generate the trip origin matrices for the pedestrian and bicycle trip modes. Thus, the 

dimensions of the generated trip origin demand matrices are [4747 × 1] with origin trip counts 

across different rows. The origin demand matrices are generated for the pedestrian and bicycle 

modes separately.  

Trip destination demand matrices: Zonal-level trip destination demand matrices are computed 

by using predictions from non-motorist attractor models as presented in Section 2.2, which are 

further used to generate the trip destination matrices for the pedestrian and bicycle trip modes. 

Thus, the dimension of the generated trip destination demand matrices are [4747 × 1] with 
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destination trip counts across different rows. The destination demand matrices are generated for 

the pedestrian and bicycle modes separately. It is worthwhile to mention here that we can also 

generate destination demand matrices by using O-D demand matrices. In doing so, we should 

follow two steps: 1) summing up trip counts of the O-D demand matrices across columns and 2) 

transposing the generated row matrices to generate the column matrices, generating trip 

destination demand matrices with dimension [4747 × 1]  of destination trip counts across 

different rows. In the current research effort, we resort to generating trip destination demand 

matrices by using information from trip attractor models as it involves only one step.  

Total trip demand matrices: Finally, zonal-level total trip demand matrices are generated by 

combining the trip origin and destination demand matrices across different zones (total trip 

demand = trip origin demand + trip destination demand). Thus, the dimensions of the generated 

total trip demand matrices are [4747 × 1] with total trip counts across different rows. The total 

trip demand matrices are generated for the pedestrian and bicycle modes separately.  

Summary Report: For representation purposes, the summary report for trip origin, destination 

and total trip demands are presented at the county level. In Table 2.10 we present the county-

level trip origin, trip destination and total trip demand matrices for the pedestrian and bicycle 

modes. The locations of these counties are presented in Figure 2.2. 

 

Figure 2.2 – County locations in Central Florida region  
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Table 2.10 – Trip demand matrices by county level 

County 

No. 

of 

TAZs 

Pedestrian Bicycle 

Trip origin 

demand 

Trip 

destination 

demand 

Total trip 

demand 

Trip origin 

demand 

Trip 

destination 

demand 

Total trip 

demand 

Brevard 692 154936.5 149804.8 304741.3 21663.59 23172.9 44836.49 

Flagler 141 26241.46 23153.66 49395.12 2940.338 2634.027 5574.365 

Indian 

River 
37 12066.78 11826.16 23892.94 1735.289 999.454 2734.743 

Lake 350 67309.28 66545.88 133855.2 10784.29 9977.642 20761.94 

Marion 422 95199.85 89602.94 184802.8 5238.246 4226.254 9464.501 

Orange 781 348163.9 355169.8 703333.7 57661.94 64084.73 121746.7 

Osceola 250 67651.62 65181.71 132833.3 4026.134 3875.623 7901.758 

Polk 621 185959.9 195543.4 381503.4 10931.12 10687.68 21618.8 

Seminole 230 75690.14 79212.17 154902.3 12179.38 11558.89 23738.27 

Sumter 147 32272.77 26598.91 58871.68 553.048 817.907 1370.955 

Volusia 1076 189987.7 174051.2 364038.8 37957.98 39924.86 77882.84 

Total 4747 1255480 1236691 2492171 165671.4 171960 337631.3 

 

2.5 Non-Motorist Trip Exposure Measures for Safety Evaluation  

In the current research effort, our objective is to evaluate non-motorist safety at a planning level. 

To that extent our focus is on examining pedestrian and bicycle crash risk (in terms of total crashes 

and crashes by injury severity levels) at the zonal level to evaluate critical planning-level factors. 

By using the outcome of these models, we can identify medium- and long-term safety 

improvement strategies to encourage non-motorist travel. As discussed in Section 1, aggregate-

level non-motorist safety is likely to be influenced by non-motorist exposure along with other 

aggregate-level attributes. Hence, we select an exposure measure identified in Section 2.4 to be 

used as non-motorist exposure measures in examining their safety at the zonal level. Specifically, 

we consider zonal-level total trip demand matrices, as presented in Table 2.10, as exposure 
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measures for further safety evaluation. The decision process of incorporating exposure measures 

in examining aggregate-level non-motorists crash and severity risks is presented in Figure 2.3 

below.   

 

 

Figure 2.3 – Non-motorist safety evaluation road map 
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3 Non-Motorized Road User Safety Evaluation 

Among the different modes of transportation, active forms such as walking and bicycling are the 

most sustainable, leaving the lowest carbon footprint on the environment. These modes also 

contribute to improving the physical health of non-motorists. However, non-motorist safety is a 

global health concern, and the United States of America is no exception. Several previous studies 

have revealed that the possibility of being involved in a collision and the risk of injury or fatality is 

higher for pedestrians and bicyclists than for motorists [9-10]. Thus, the safety concerns remain a 

detriment for walking or biking. As a consequence, these transport alternatives have the lowest 

mode shares, specifically in North American communities where personal automobiles are the 

most common mode of transportation [11]. However, the transportation decision makers of 

developed countries are proactively encouraging the adoption of these active forms of 

transportation for short-distance trips given the growing concern of worsening global climate 

change and increasing obesity among adults. For increasing the adoption of active transportation, 

there is a need to reduce the risk to pedestrians and bicyclists on roadways. Any effort to reduce 

the social burden of these crashes and enhance non-motorist safety would necessitate the 

examination of factors that contribute significantly to crash likelihood and/or severity outcomes 

in the event of a crash and the implementation of policies that enhance safety for pedestrians 

and bicyclists. Important tools for identifying and evaluating road safety policies are forecasting 

and policy evaluation, which are predominantly devised through evidence-based and data-driven 

safety analysis. 

Traditionally, transportation safety analysis by using crash records has evolved along two major 

streams: crash frequency analysis and crash severity analysis. Crash frequency or crash prediction 

analysis is focused on identifying attributes that result in traffic crashes and proposing effective 

countermeasures to improve the roadway design and operational attributes (Lord and Mannering 

[12] offer a review of these studies). The crash frequency models study aggregate information, 

such as total number of crashes at an intersection or at a spatial aggregation level (zone or tract 

level), and are developed by using non-crash-specific data. On the other hand, crash severity 

analysis is focused on examining crash events, identifying factors that impact the crash outcome 

and providing recommendations to reduce the consequences (injuries and fatalities)  in the 

unfortunate event of a traffic crash (see references for reviews [13, 14]). The crash severity 

models are developed by using detailed post-crash data and are quite disaggregate in nature 

because they consider every crash as a record for model development. In evaluating the impact 

of a safety measure, crash frequency analysis forecasts the change in crash occurrences, whereas 

crash severity analysis forecasts the change in crash consequences (injuries and fatalities). 

The disaggregate-level crash severity analysis is focused on examining crash events. It is 

worthwhile to mention here that these models cannot be directly employed to incorporate safety 

considerations in the transportation planning process. The outcomes of aggregate-level crash 

count models, specifically macro-level models, can be used to devise safety-conscious decision 

support tools to facilitate proactive approach in assessing medium- and long-term policy-based 

countermeasures. Moreover, the tool plays an important role in safety implications of land use 

planning initiatives and alternate network-planning initiatives. Therefore, aggregate-level crash 

count models are more feasible for planning-level policy analysis and identifying policy measures. 
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To that extent, in this research effort, we estimate four different sets of aggregate-level models: 

(1) zonal-level crash count model for examining pedestrian–motor vehicle crash occurrences, (2) 

zonal-level crash count model for examining bicycle–motor vehicle crash occurrences (3) zonal-

level crash severity model for examining pedestrian crash injury severity by proportions and (4) 

zonal-level crash severity model for examining bicycle crash injury severity by proportions. These 

models are estimated for the study area defined by CFRPM 6.0 by using crash records of the base 

year 2010. In the following sections, we present the outcomes of these models. 

3.1 Crash Frequency Analysis 

A regional- or zonal-level safety planning tool can be devised by using a macro-level study and 

hence is useful not only for planners but also for decision-makers. Therefore, it is important to 

investigate zonal-level pedestrian and bicycle crashes to identify critical factors and propose 

implications to facilitate proactive safety-conscious planning. In this current research effort, we 

formulate and estimate count models for examining pedestrian and bicycle crash risks. The count 

models are estimated at the TAZ level for the CFRPM 6.0 area employing a comprehensive set of 

exogenous variables. Based on the model results, we identify important exogenous variables that 

influence pedestrian and bicycle crash counts. The NB model, which offers a closed-form 

expression while relaxing the mean variance equality constraint of Poisson regression, serves as 

the workhorse for crash count modeling. Therefore, crash count models for examining pedestrian 

and bicycle crash events are developed in this study by using the NB modeling approach. 

3.1.1 Model Framework 

The focus of our study is to model pedestrian crash frequency and bicycle crash frequency at the 

zonal level by employing the NB modeling framework. The econometric framework for the NB 

model is presented in this section. 

Let 𝑖 be the index for TAZ (𝑖 = 1,2,3, … , 𝑁) and 𝑦𝑖  be the index for crashes occurring over a period 

of time in a TAZ 𝑖. The NB probability expression for random variable 𝑦𝑖  can be written as: 

𝑃𝑖(𝑦𝑖|𝜇𝑖 , 𝛼) =  
Γ(𝑦𝑖+

1

𝛼
)

Γ(𝑦𝑖+1)Γ(
1

𝛼
)

(
1

1+
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𝛼

)

1

𝛼
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1

1+
𝜇𝑖
𝛼

)

𝑦𝑖

   (3.1) 

where Γ(∙) is the Gamma function, 𝛼  is the NB dispersion parameter, and 𝜇𝑖  is the expected 

number of crashes occurring in TAZ 𝑖 over a given period of time.  

We can express 𝜇𝑖  as a function of explanatory variable (𝑥𝑖) by using a log-link function as: 𝜇𝑖 =

𝐸(𝑦𝑖|𝑥𝑖) = 𝑒𝑥𝑝(𝛽𝑥𝑖) , where 𝛽  is a vector of parameters to be estimated. Finally, the log-

likelihood function for the NB model can be written as: 

𝐿𝐿 = ∑ 𝑙𝑜𝑔(𝑃𝑖)𝑁
𝑖=1                                                                           (3.2) 

The parameters to be estimated in the model of Equation 3.2 are 𝜷 and 𝜶. The parameters are 

estimated using maximum likelihood approaches.  

3.1.2 Dependent Variable and Data Description 

The crash frequency analysis is focused on pedestrian and bicycle crashes at the TAZ level for 

4,747 TAZs in the area defined by the CFRPM 6.0 area. For this report, we have examined the 
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pedestrian and bicycle crash count events for the year 2010 to reflect the base year situation in 

terms of non-motorized safety. For the year 2010, 1,474 (with 0, 9 and 0.31 zonal minimum, 

maximum and average, respectively) and 1,012 (with 0, 8 and 0.21 zonal minimum, maximum and 

average, respectively) crashes were reported involving pedestrians and bicycles, respectively. 

Spatial representation of these crashes at the zonal level is shown in Figure 3.1.  

 Figure 3.1 - Total number of pedestrian and bicycle crashes for the year 2010 

 

In addition to the crash database, the explanatory attributes considered in the empirical study are 

also aggregated at the TAZ level accordingly. To reflect the base year characteristics of the analysis 

zone, all attributes are generated for the year 2010. For the empirical analysis, the selected 

explanatory variables can be grouped into five broad categories: sociodemographic 

characteristics, socioeconomic characteristics, roadway attributes, land use characteristics and 

exposure measures. Table 3.1 offers a summary of the sample characteristics of the exogenous 

variables and the definition of variables considered for final model estimation along with the zonal 

minimum, maximum and average.  

 

Table 3.1 – Sample characteristics for crash frequency models 

Variable 

name 

Description Zonal 

Minimum Maximum Mean 

Sociodemographic characteristics 

Population 

density 

Total number of population of TAZ/ Area 

of TAZ in acre 

0.000 19.956 2.366 
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Proportion of 

people aged 

65+ 

Total number of people above 65 years 

old of TAZ/ Total number of population 

of TAZ 

0.000 0.899 0.182 

Roadway and traffic attributes 

Traffic signal 

density 

Total number of traffic signals in TAZ 0.000 8.000 0.379 

Proportion of 

arterial road 

Total length of arterial road of TAZ/Total 

roadway length of TAZ 

0.000 1.000 0.459 

Proportion of 

local road 

Total length of local road of TAZ/Total 

roadway length of TAZ 

0.000 1.000 0.040 

Length of 

sidewalk 

Total sidewalk length in meter of TAZ 0.000 36.346 0.280 

Length of 

bike lane 

Total bike lane length of TAZ in meters 0.000 58.525 0.421 

Length of bus 

lane 

Total bus lane length of TAZ in 

kilometers 

0.000 31.161 0.888 

AADT Total annual average daily traffic (AADT) 

of TAZ/10000 

0.000 27.550 0.931 

Truck AADT Total truck AADT of TAZ/10000 0.000 2.747 0.083 

Built environment 

Number of 

commercial 

centers 

Total number of commercial centers of 

TAZ 

0.000 4.000 0.087 

Number of 

financial 

centers 

Total number of financial centers of TAZ 0.000 17.000 0.586 

Number of 

educational 

centers 

Total number of educational center of 

TAZ 

0.000 5.000 0.275 

Number of 

transit hubs 

Total number of transit hubs of TAZ 0.000 11.000 0.051 

Number of 

restaurants 

Total number of restaurants of TAZ 0.000 36.000 1.335 

Number of 

parks and 

recreational 

centers 

Total number of parks and recreational 

centers of TAZ 

0.000 20.000 0.245 



 

 

           31 
Enhancing Non-Motorized Safety by Simulating Non-Motorized Exposure using a 

Transportation Planning Approach 

Number of 

hospitals 

Total number of hospitals of TAZ 0.000 2.000 0.017 

Land-use characteristics 

Urban area Ln (Urban area in a TAZ in acres) -9.275 8.491 4.291 

Residential 

area 

Ln (Residential area in a TAZ in acres) -12.427 8.014 3.596 

Recreational 

area 

Ln (Recreational area in a TAZ in acres) -13.946 10.040 0.388 

Land-use mix Land use mix = [(-∑k(Pk (lnPk)) )/lnN], 

where k is the category of land-use, p is 

the proportion of the developed land 

area devoted to a specific land-use, N  is 

the number of land-use categories in a 

TAZ 

0.000 0.929 0.355 

Exposure measures 

Total 

pedestrian 

trip demand 

per 

household 

Total pedestrian daily trip demand in a 

TAZ/(Total number of household in a 

TAZ*100) 

0.000 948.164 0.321 

Total bicycle 

trip demand 

Ln(Total bicycle daily trip demand in a 

TAZ) 

0.000 9.549 0.259 

 

3.1.3 Estimation Results 

In this research effort, we estimate two different NB models: one model for pedestrian crash 

count events at the zonal level and another model for bicycle crash count events at the zonal 

level. Table 3.2 presents the estimation results of the NB models. The pedestrian crash count 

model results are presented in 2nd and 3rd columns of Table 3.2, and the bicycle crash count 

model results are presented in the 4th and 5th columns. The effects of exogenous variables in 

model specifications for both pedestrian and bicycle crash count models are discussed in this 

section by variable groups.  

In NB models, the positive (negative) coefficient corresponds to increased (decreased) crash risk. 

The final specification of the model was based on removing the statistically insignificant variables 

in a systematic process based on statistical significance (90% significance level) and intuitive 

coefficient effect. In estimating the models, several functional forms and variable specifications 

are explored. The functional form that provided the best result is used for the final model 

specifications and, in Table 3.1, the variable definitions are presented based on these final 

functional forms of variables. 
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Table 3.2 - Estimation results of negative binomial models 

Variable name Pedestrian Bike 

Estimates t-stat Estimates t-stat 

Constant -3.063 -22.318 -3.789 -23.884 

Sociodemographic characteristics 

Population density 0.131 10.645 0.130 10.050 

Proportion of people aged 65+ -1.401 -4.229 -0.979 -3.019 

Roadway and traffic attributes 

Traffic signal density 0.223 6.001 0.146 3.994 

Proportion of arterial road 0.325 3.723 0.341 3.619 

Proportion of local road --- --- -0.799 -2.241 

Length of sidewalk 0.025 2.090 --- --- 

Length of bike lane --- --- 0.016 1.681 

Length of bus lane --- --- 0.087 5.040 

AADT 0.037 2.373 0.090 2.272 

Truck AADT --- --- -1.054 -2.510 

Built environment 

Number of commercial centers --- --- 0.182 1.863 

Number of financial centers  --- --- 0.063 3.204 

Number of educational centers  0.085 1.822 --- --- 

Number of transit hubs 0.254 5.506 --- --- 

Number of restaurants 0.086 9.055 0.052 5.135 

Number of parks and recreational 

centers 

0.123 3.173 --- --- 

Number of hospitals --- --- 0.307 3.143 

Land-use characteristics 

Urban area 0.123 5.098 0.165 5.876 

Residential area 0.041 2.076 0.082 3.736 

Recreational area --- --- -0.049 -2.222 
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Land-use mix 0.810 4.673 0.697 3.719 

Exposure measures 

Total pedestrian trip demand per 

household 

-0.277 -1.482 --- --- 

Total bicycle trip demand --- --- 0.042 2.055 

Overdispersion parameter 1.004 9.297 0.641 5.642 

 

Sociodemographic characteristics: With respect to sociodemographic characteristics, the 

estimates indicate that both pedestrian and bicycle crashes are positively associated with 

population density. At the same time, the results in Table 3.2 indicate a reduced crash propensity 

for both pedestrians and bicyclists with a higher proportion of population aged 65 and over. 

Roadway and traffic attributes: Several roadway and traffic attributes are found to be significant 

determinants of pedestrian and bicycle crashes at the zonal level. The results associated with 

traffic signal density reveal that an increase in traffic signal density in a zone increases the 

likelihood of both pedestrian and bicycle crashes. A higher proportion of arterial road results in 

higher pedestrian and bicycle crash risks. At the same time, a higher proportion of local roads is 

found to have negative impact on bicycle crash risk. From Table 3.2, we can see that the likelihood 

of a pedestrian crash is higher in the zone with a higher sidewalk length. It is also surprising to 

note that TAZs with higher bicycle lane lengths have an increased likelihood of bicycle crashes. 

The result for length of zonal-level bus lanes reveals an increasing likelihood of bicycle crash. An 

increase in zonal AADT increases the likelihood of both pedestrian and bicycle crashes at the TAZ 

level. The result in the bicycle crash model suggests that zones with higher truck AADT have a 

decreased likelihood of bicycle crashes. 

Built environment: With respect to built environment, the estimation results of the pedestrian 

crash risk model reveal that a higher number of educational centers, transit hubs, restaurants and 

parks/recreational centers results in a higher pedestrian crash risk at the zonal level. From the 

results of the bicycle crash risk models, we can see that bicycle crash risk is positively associated 

with a higher number of commercial centers, financial centers, restaurants and hospitals. 

Land-use characteristics: Several land-use characteristics are found to be significant determinants 

of pedestrian and bicycle crash risks. Pedestrian and bicycle crash risks increase with increasing 

urbanized and residential areas. In the bicycle crash risk model, recreational area is found to 

decrease the likelihood of zonal-level bicycle crash risk. TAZs with higher land-use mix have 

increased propensity for both pedestrian and bicycle crashes. 

Exposure measures: The non-motorist exposure measures generated from Section 2.4 are used 

in evaluating zonal-level pedestrian and bicycle crash risk. Specifically, we use the total daily trip 

demand of pedestrians and bicyclists as exogenous variables in pedestrian and bicycle crash risk 

models, respectively. We consider different functional forms of pedestrian and bicycle exposure 

measures in estimating NB models and the functional form that provides the best fit is considered 

in the final specifications. With respect to the pedestrian crash risk model, pedestrian exposure 

measures with any of the functional forms are not found to be significant at a 90% confidence 
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level. However, pedestrian trip demand per household at a zonal level provides the best data fit 

and hence is considered in our final pedestrian crash risk model. From Table 3.2, we can see that 

a higher number of pedestrians per household decreases the risk of pedestrian–motor vehicle 

crashes. With respect to bicycle crash risk model, bicycle exposure measures are found to have a 

significant impact on zonal-level bicycle-motor vehicle crash risk. The estimation result of 

exposure measure in the bicycle crash risk model reveals that a higher bicyclist trip demand at a 

zonal level increases the risk of bicycle crashes.  

3.1.4 Validation Exercise of Crash Count Models 

In order to demonstrate the predictive performance of the estimated crash count models, a 

validation experiment is also carried out. The most common approach to performing a validation 

exercise for an aggregate-level model is to evaluate the in-sample predictive measures. To 

evaluate the in-sample goodness-of-fit measures, we employ different fit measures that are 

widely used in statistical analysis. For crash frequency models, we compute mean prediction bias 

(MPB) and mean absolute deviation (MAD). These fit measures quantify the error associated with 

model predictions, and the model with lower fit measures provides better predictions of the 

observed data. These measures are computed as: 

𝑀𝑃𝐵 =  
∑ (�̂�𝑖−𝑦𝑖)𝑛

𝑖=1

𝑛
  (3.3) 

 𝑀𝐴𝐷 =  
∑ |�̂�𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
 

where �̂�𝑖  and 𝑦𝑖  are the predicted and observed values for event 𝑖 (𝑖 is the index for event 

(𝑖 = 1,2,3, … , 𝑁)) and 𝑛 is the number of events.  

Table 3.3 presents the values for these measures for NB models for pedestrian and bicycle crash 

count models. Further, we also compared the predictive performance of NB models by comparing 

the observed and predictive counts across different count events, which are presented in Figure 

3.2. From Table 3.3 and Figure 3.2, we can argue that the resulting fit measures for comparing the 

predictive performance clearly indicate that the models’ predictive performances are overall 

reasonable with less error in predictions.  

 

Table 3.3 - Predictive performance evaluation 

In-sample predictive fit measures for count models 

Models 
Mean crash 

MPB MAD 
Observed Predicted 

Pedestrian 0.31 0.33 -0.81 11.44 

Bicycle 0.21 0.22 -0.28 6.41 
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Figure 3.2 - Crash count model predictions 

 

3.2 Crash Severity Analysis 

Crash count data are often compiled by injury severity outcomes (for example: no injury, minor 

injury, major injury and fatal injury crashes). Given the consequences of road traffic crashes, it is 

important to examine crash frequency by severity level as it would play a significant role in model 

implications. To that extent, we can develop independent crash prediction models for different 

injury severity levels. However, for the same observation record, crash frequencies by different 

severity levels are likely to be dependent. Therefore, it might be beneficial to evaluate the impact 

of exogenous variables in a framework that directly relates a single exogenous variable to all 

severity count variables simultaneously, i.e., a framework where the observed propensities for 

crashes are examined by severity level directly. To that extent, in this current research effort, as 

opposed to modeling the number of crashes, we adopt a fractional split modeling approach to 

study the fraction of crashes by each severity level at a TAZ level. Specifically, we formulate and 

estimate ordered probit fractional split (OPFS) models for examining pedestrian and bicycle crash 

proportions by severity levels. The fractional split models are estimated at the TAZ level for the 

CFRPM 6.0 area employing a comprehensive set of exogenous variables. Based on the model 

results, we identify important exogenous variables that influence pedestrian and bicycle crash 

severity proportions.   

3.2.1 Model Framework 

The formulation for the OPFS model for modeling the proportion of crashes by severity is 

presented in this section. The reader should note that conventional maximum likelihood 

approaches are not suited for factional proportion models. Hence, we resort to a quasi-likelihood 

approach. See Yasmin et al. [15] for a detailed description of the modeling approach. Yasmin et 

al. [15] developed the ordered outcome fractional split model that allows the analysis of 

proportion for variables with multiple alternatives while also recognizing the inherent ordering in 

the severity outcomes. 
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Model Structure 

Let 𝑞 (𝑞 =  1, 2, … , 𝑄) be an index to represent TAZ, and let 𝑘 (𝑘 =  1, 2, … , 𝐾) be an index to 

represent severity category. The latent propensity equation for severity category at the 𝑞 th zone: 

𝑦𝑞
∗ = 𝛼′𝑧𝑞 + 𝜉𝑞 (3.4) 

This latent propensity 𝑦𝑞
∗  is mapped to the actual severity category proportion 𝑦𝑞𝑘  by the   

thresholds ( 0  and k ). 𝑧𝑞 is an (L x 1) column vector of attributes (not including a 

constant) that influences the propensity associated with severity category.   is a corresponding 

(L x 1)-column vector of mean effects. 𝜉𝑞 is an idiosyncratic random error term assumed to be 

identically and independently standard normal distributed across zones q. 

Model Estimation 

The model cannot be estimated using conventional maximum likelihood approaches. Hence, we 

resort to a quasi-likelihood-based approach for our methodology. The parameters to be estimated 

in Equation 3.4 are the   and   thresholds. To estimate the parameter vector, we assume that  

1,10),,()|(
1

 


K

k

qkqkqkqkqk HHHzyE   (3.5) 

qkH in our model takes the ordered probit probability ( qkP ) form for severity category k defined 

as 

       1 qqkqqkqk zGzGP     (3.6) 

The proposed model ensures that the proportion for each severity category is between 0 and 1 

(including the limits). Then, the quasi-likelihood function, for a given value of q vector, may be 

written for site q as: 

    
qkdK

k

qqkqqkq zGzGL 





1

1    ),(   (3.7) 

where G(.) is the cumulative distribution of the standard normal distribution and qkd  is the 

proportion of crashes in severity category k. The model estimation is undertaken using routines 

programmed in the Gauss matrix programming language.  

3.2.2 Dependent Variable and Data Description 

The crash proportion analysis is focused on pedestrian and bicycle crashes at the TAZ level for 

4,747 TAZs in the area defined by the CFRPM 6.0 model. For this report, we have examined the 
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pedestrian and bicycle crash count by severity levels for the year 2010 to reflect the base year 

situation in terms of non-motorized safety. Injury severity levels of non-motorist-involved crashes 

are presented in 5 ordinal scale variables: property damage only, possible injury, non-

incapacitating, incapacitating injury and fatal crashes. For the year 2010, sample characteristics 

of crash injury severity outcome for pedestrian and bicycle crashes are presented in Table 3.4. 

From Table 3.4, we can see that number of zones with pedestrian crashes is higher than the 

number of zones with bicycle crashes. Moreover, the number of pedestrians involved in fatal 

crashes is much higher than the number of bicyclists involved in fatal crashes. Locations of zones 

with pedestrian and bicycle crashes for different injury severity levels are shown in Figure 3.3.   

 

Table 3.4 – Sample characteristics of crash injury severity outcomes 

Crash severity levels 

Zonal 

Pedestrian Bicycle 

Minimum Maximum Total Minimum Maximum Total 

Zone with no crashes 3798 4028 

Zones with crashes 949 719 

Number of property 

damage only crashes 
0 3 168 0 2 104 

Number of minor injury 

crashes 
0 6 382 0 5 325 

Number of non-

incapacitating injury 

crashes 

0 4 580 0 4 416 

Number of incapacitating 

injury crashes  
0 4 282 0 3 124 

Number of fatal crashes 0 2 129 0 1 15 
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Figure 3.3 – Location of zones with different severity outcomes for pedestrian and bicycle 

crashes for the year 2010 

 

For examining crash injury severity proportions, we consider zones with non-zero crashes only. 

Thus, for pedestrian and bicycle crash proportion models, the datasets have 949 and 719 records, 

respectively. In the case of five severity levels, the dependent variable in this research effort is 

represented as proportions (number of specific crash level/total number of all crashes) as follows: 

(1) proportion of property damage only crashes, (2) proportion of minor injury crashes, (3) 

proportion of non-incapacitating injury crashes, (4) proportion of incapacitating injury crashes 

and (5) proportion of fatal crashes. The dependent variable proportions and sample size for 

pedestrian and bicycle crashes are presented in Table 3.5. From Table 3.5, we can observe that 

fatal crash proportion is higher for pedestrians than for bicycle-involved crashes. 

 

Table 3.5 - Severity proportions 

Crash severity levels Pedestrian Bicycle 
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Sample 949 719 

Proportion of property damage only crashes 0.113 0.115 

Proportion of minor injury crashes 0.237 0.320 

Proportion of non-incapacitating injury crashes 0.382 0.407 

Proportion of incapacitating injury crashes  0.183 0.141 

Proportion of fatal crashes 0.085 0.017 

 

In addition to the crash database, the explanatory attributes considered in the empirical study are 

also aggregated at the TAZ level accordingly. To reflect the base year characteristics of the analysis 

zone, all attributes are generated for the year 2010. For the empirical analysis, the selected 

explanatory variables can be grouped into five broad categories: sociodemographic 

characteristics, roadway and traffic attributes, built environment characteristics, land-use 

characteristics and exposure measures. Table 3.6 offers a summary of the sample characteristics 

of the exogenous variables and the definition of variables considered for final model estimation 

along with the zonal minimum, maximum and average.  

 

Table 3.6 – Summary characteristics for crash severity models 

Variable 

name 

Description Pedestrian Bike 

Zonal Zonal 
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Sociodemographic Characteristics 

Population 

density 

Total number of 

population of TAZ/ 

Area of TAZ in acres 

0.000 19.956 3.362 0.000 19.956 3.622 

Proportion of 

people aged 

22 to 29 

Total number of 

population of TAZ 

who are 22 to 29 

years old / Total 

number of population 

of TAZ 

0.000 0.373 0.111 - - - 

Roadway and Traffic Attributes 
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Number of 

flashing 

beacon signs 

Total number of 

flashing beacons of 

TAZ 

- - - 0.000 1.000 0.006 

Number of 

school 

signals 

Total number of 

school signals of TAZ 

- - - 0.000 1.000 0.003 

Availability of 

bike lanes 

Availability of bike 

lanes in TAZ 

- - - 0.000 1.000 0.058 

VMT Vehicle miles traveled 

= Total road length in 

miles * Average 

annual daily traffic / 

100000 

0.000 17.052 0.430 - - - 

Built Environment 

Number of 

commercial 

centers 

Total number of 

commercial centers 

of TAZ 

0.000 3.000 0.113 - - - 

Number of 

hospitals 

Total number of 

hospitals of TAZ 

- - - 0.000 2.000 0.033 

Number of 

parks and 

recreational 

centers 

Total number of 

parks and 

recreational centers 

of TAZ 

- - - 0.000 7.000 0.307 

Land-use Characteristics 

Urban area Ln (Urban area in a 

TAZ in acres) 

-6.254 8.384 5.236 -4.661 8.384 5.328 

Residential 

area 

Ln (Residential area in 

a TAZ in acres) 

- - - -9.052 7.647 4.070 

Exposure measures 

Total 

pedestrian 

trip demand 

per 

household 

Total pedestrian daily 

trip demand in a 

TAZ/(Total number of 

households in a 

TAZ*100) 

0.000 1.316 0.021 - - - 

Total bicycle 

trip demand 

per 

household 

Total bicycle daily trip 

demand in a 

TAZ/Total number of 

households in a TAZ 

- - - 0.000 134.686 0.498 
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3.2.3 Estimation Results 

In this research effort, we estimate two different OPFS models: one model for pedestrian crash 

severity proportions at the zonal level and another model for bicycle crash severity proportions 

at the zonal level. Table 3.7 presents the estimation results of the OPFS models. The pedestrian 

crash severity proportion results are presented in the 2nd and 3rd columns of Table 3.7, and the 

bicycle crash severity proportion model component are presented in the 4th and 5th columns. In 

OPFS models, the positive (negative) coefficient corresponds to increased (decreased) 

proportions of severe injury categories. The final specification of the model was based on 

removing the statistically insignificant variables in a systematic process based on statistical 

significance (90% confidence level) and intuitive coefficient effect. In estimating the models, 

several functional forms and variable specifications are explored. The functional form that 

provided the best result is used for the final model specifications. The effects of exogenous 

variables in model specifications for both pedestrian and bicycle crash severity proportion models 

are discussed in this section by variable groups. 

 

Table 3.7 - Estimation results of ordered probit fraction split models 

Variable name 
Pedestrian Bike 

Estimates t-stat Estimates t-stat 

Threshold 1 -1.708 -13.117 -1.450 -8.330 

Threshold 2 -0.870 -6.818 -0.395 -2.309 

Threshold 3 0.146 1.148 0.798 4.589 

Threshold 4 0.916 7.018 1.954 9.929 

Sociodemographic Characteristics 

Population density -0.022 -1.898 -0.032 -2.061 

Proportion of people aged 22 to 29 -1.321 -1.965 --- --- 

Roadway and Traffic Attributes 

Number of flashing beacon sign --- --- 0.936 2.347 

Number of school signal --- --- 0.362 2.474 

Availability of bike lane --- --- -0.288 -1.797 

VMT 0.049 1.675 --- --- 

Built Environment 

Number of commercial center -0.149 -1.936 --- --- 

Number of hospital --- --- -0.189 -1.795 

Number of park and recreational center --- --- 0.139 2.802 
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Land-use Characteristics 

Urban area -0.046 -2.466 -0.076 -2.079 

Residential area --- --- 0.066 2.560 

Exposure Measures 

Total pedestrian trip demand per 

household 
-1.063 -2.756 --- --- 

Total bicycle trip demand per household --- --- -0.005 -1.040 

 

Sociodemographic characteristics: With respect to sociodemographic characteristics, the 

estimates indicate that population density results in lower likelihood of severe crash proportions 

for both pedestrian and bicycle crashes. The proportion of 22- to 29-year-olds in the population 

has a negative impact on the proportion of pedestrian crash severity outcomes, implying a 

reduced likelihood of more severe pedestrian crashes.  

Roadway and traffic attributes: The OPFS model results for bicycles reveal a higher proportion of 

severe crash outcomes for zones with a higher number of flash beacon signs and a higher number 

of school signals. As expected, availability of bike lanes is found to reduce the proportion of less 

severe bicycle crashes. With respect to traffic attributes, higher VMT is positively associated with 

more severe crash proportions in the pedestrian crash proportion model.  

Built environment: The crash proportion model for pedestrian-involved crashes reveals that the 

pedestrian crash proportion of severe crashes is lower in TAZs with a higher number of 

commercial centers. A higher number of hospitals is associated with a lower likelihood of severe 

crash proportion in the OPFS model for bicycles. At the same time, the OPFS model results reveal 

that a higher number of parks and recreational centers increases the possibility of higher 

proportions of severe bicycle crash outcomes. 

Land-use characteristics: From both the pedestrian and bicycle models, we find that the 

possibility of more severe crashes decreases with increasing shares of urbanized areas of a TAZ. 

Residential area is found to be a significant determinant of bicycle crash proportion by severity 

outcomes. The estimate for residential area has a positive coefficient in the bicycle crash severity 

model, suggesting that proportion of severe bicycle crashes increases with increasing zonal-level 

residential areas. 

Exposure measures: The non-motorist exposure measures generated from Section 2.4 are used 

in evaluating zonal-level pedestrian and bicycle crash severity proportions. In estimating OPFS 

models, several functional forms and variable specifications are explored. The functional form 

that provided the best result is used for the final model specifications as presented With respect 

to the pedestrian crash severity proportion model, pedestrian exposure measures are found to 

have a significant impact on zonal-level bicycle–motor vehicle crash severity outcome 

proportions. The estimation result of exposure measures in the pedestrian crash severity 

proportion model reveals that a higher number of pedestrian trip demand per household at a 

zonal level decreases the propensity for a higher proportion of severe crashes. With respect to 

the bicycle crash severity proportion model, bicycle exposure measures with any of the functional 
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forms are not found to be significant at a 90% confidence level. However, bicycle trip demand per 

household at a zonal level provides the best data fit and hence is considered in our final OPFS 

model. From Table 3.7, we can see that a higher number of bicyclists per household decreases 

the risk of a higher proportion of severe bicycle–motor vehicle crashes.  

3.2.4 Validation Exercise of Crash Proportion Models 

In order to demonstrate the predictive performance of the estimated crash proportion models, a 

validation experiment is also carried out. The most common approach to perform a validation 

exercise for an aggregate-level model is to evaluate the in-sample predictive measures. For crash 

proportion models, we compute mean absolute percentage error (MAPE) and root mean square 

error (RMSE). These fit measures quantify the error associated with model predictions, and the 

model with lower fit measures provides better predictions of the observed data. These measures 

are computed as: 

𝑀𝐴𝑃𝐸 =  ∑ |
�̂�𝑖−𝑦𝑖

𝑦𝑖
|𝑛

𝑖=1   (3.8) 

 𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
 

where �̂�𝑖  and 𝑦𝑖  are the predicted and observed values for event 𝑖 (𝑖 is the index for event 

(𝑖 = 1,2,3, … , 𝑁)) and 𝑛 is the number of events.  

 

Table 3.8 presents the values for these measures for the OPFS models for the pedestrian and 

bicycle crash models. From Table 3.8, we can argue that the resulting fit measures for comparing 

the predictive performance clearly indicate that the models’ predictive performances are overall 

reasonable with less error in predictions.  

 

Table 3.8 - Predictive performance evaluation 

In-sample predictive fit measures for fractional split models 

Models 
Mean proportion 

MAPE RMSE 
Severity levels Observed Predicted 

Pedestrian 

Proportion of property 

damage only crashes 
0.113 0.114 

0.003 0.531 

Proportion of minor injury 

crashes 
0.237 0.237 

Proportion of non-

incapacitating injury crashes 
0.382 0.381 

Proportion of incapacitating 

injury crashes  
0.183 0.184 
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Proportion of fatal crashes 0.085 0.085 

Bicycle 

Proportion of property 

damage only crashes 
0.115 0.116 

0.006 0.292 

Proportion of minor injury 

crashes 
0.320 0.320 

Proportion of non-

incapacitating injury crashes 
0.407 0.407 

Proportion of incapacitating 

injury crashes  
0.141 0.141 

Proportion of fatal crashes 0.017 0.017 
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4 Policy Scenario Analysis and Recommendations 

The parameter effects of exogenous variables in Sections 2 and 3 do not directly provide the 

magnitude of the effects on zonal-level non-motorist demand and crash risks (both in terms of 

frequency and proportions of severity) and therefore cannot be directly employed for policy 

scenario analysis. For policy scenario analysis, we compute aggregate-level “elasticity effects” of 

exogenous variables both in the demand models and safety models (crash frequency and crash 

severity by proportions) (see work by Eluru and Bhat [16] for a discussion on the methodology for 

computing elasticities). We investigate the effect as a percentage change in the expected total 

zonal demand, total zonal crash counts and total proportions by severity levels to the change in 

exogenous variables for the study region. In the current study context, we perform policy analysis 

for different scenarios as follows: 

 Scenario 1: 50% reduction in traffic volume within 2 miles buffer area of different 

central business districts (CBD). 

 Scenario 2: 30% reduction in traffic volume within 2 miles buffer area of different 

central business districts (CBD). 

 Scenario 3: 15% reduction in traffic volume within 4 miles buffer area of different 

central business districts (CBD). 

 Scenario 4: 5% reduction in traffic volume within 6 miles buffer area of different 

central business districts (CBD). 

 Scenario 5: All zones have sidewalk, and the new proposed sidewalk length =

 
(𝑇𝐴𝑍 𝑎𝑟𝑒𝑎)0.5

2
 𝑚𝑒𝑡𝑒𝑟. 

 Scenario 6: 50% increase in existing sidewalk length. 

 Scenario 7: 15% reduction in zonal average maximum speed. 

 Scenario 8: 25% reduction in zonal average maximum speed. 

 Scenario 9: 15% reduction in zonal proportion of 3+ lane road. 

 Scenario 10: 25% reduction in zonal proportion of 3+ lane road. 

These scenarios are evaluated for all zones and for both the pedestrian and bicycle groups of road 

users separately. Moreover, we also evaluate Scenarios 1, 2, 3 and 4 for the zones within 2 (for 

Scenarios 1 and 2), 4 (for Scenario 3) and 6 (for Scenario 4) miles of buffer area for multiple CBDs 

in the Central Florida region, including Orlando, Sanford, Lakeland, Kissemme, Deland, Ocala, 

Melbourne, Palm Bay, Leesburg, Daytona Beach and Port Orange. In evaluating each scenario, we 

perform policy scenario analysis for three different components: 

1. Component 1: Policy analysis for non-motorist demand - Evaluate change in total 

demand due to the change considered in the scenario. 

2.  Component 2: Policy analysis for non-motorist crash frequency - Evaluate the change 

in total crash frequencies considering the change in the scenario and the change in 

demand from Component 1 accordingly. 

3. Component 3: Policy analysis for non-motorist crash severity proportions - Evaluate 

the change in total crash proportions by severity considering the change in the 

scenario and the change in demand from Component 1 accordingly. 

By performing policy scenario analysis for these three components, we ensure that the updated 

demand matrices for each scenario are produced and employed in developing exposure measures 
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for non-motorized travel as well as vehicular volumes on roadways. With these new exposure 

measures, the safety models are re-run to generate estimates of scenario-based crash and 

severity rates and the change in safety situation. A comparison across scenarios would allow us 

to identify beneficial changes to the existing infrastructure for improving non-motorized road user 

safety. The spatial representation of the considered CBD locations is shown in Figure 4.1. In the 

following sections, we describe the results from these policy scenario matrices for all three 

components. 

Figure 4.1 – Considered central business district locations 

 

4.1 Policy Analysis for Non-Motorist Demand 

Policy scenario analysis for non-motorist travel demand is presented in this section. The change 

in total demand is evaluated across all scenarios for the pedestrian and bicycle groups of road 

users separately. The computed elasticities for total change in demand are presented in Table 4.1. 

The numbers in Table 4.1 may be interpreted as the percentage change in the expected total zonal 

demand per day due to the change in exogenous variable. The following observations can be 

made based on the elasticity effects presented in Table 4.1.  

First, decreasing vehicular traffic volume near the CBD location have a greater effect on 

pedestrian demand than on bicycle demand. For both modes, we can observe from the table that 

a higher level of non-motorist activities can be gained by restricting vehicular traffic; the greater 
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the restrictions, the higher the level of non-motorist demand. Second, increasing sidewalk 

facilities is likely to attract more non-motorists, but for the hypothetical Scenario 5, the demand 

for pedestrians is likely to get reduced. Third, the reduction in speed has a greater impact on 

increasing pedestrian demand. However, for bicycles, the variable has no impact, as it was found 

insignificant in bicycle demand models. Fourth, a restriction in the number of traffic lanes is likely 

to have a similar impact; as we can see from Table 4.1, it increases non-motorist demand. 

Recommendations: From the policy scenario analysis, it is quite clear that providing more 

walking- and bicycle-friendly facilities is likely to encourage more people to use non-motorized 

modes. Thus, we can argue that restricting lanes, reducing speed and reducing/restricting 

vehicular volume in a certain zone would increase non-motorist volume.    

 

Table 4.1 – Elasticity effects for non-motorist total zonal demand 

Scenarios Study region Number of zones Pedestrian Bicycle 

Scenario 1 

All zones 4747 0.164 0.043 

Zones within 2-mile buffer 

of CBD 
703 1.804 0.389 

Scenario 2 

All zones 4747 0.096 0.026 

Zones within 2-mile buffer 

of CBD 
703 1.060 0.231 

Scenario 3 

All zones 4747 0.125 0.030 

Zones within 4-mile buffer 

of CBD 
1375 0.498 0.090 

Scenario 4 

All zones 4747 0.071 0.013 

Zones within 6-mile buffer 

of CBD 
1985 0.166 0.027 

Scenario 5 All zones 4747 -0.438 0.108 

Scenario 6 All zones 4747 0.705 0.289 

Scenario 7 All zones 4747 1.407 0.000 

Scenario 8 All zones 4747 2.389 0.000 

Scenario 9 All zones 4747 0.287 0.576 

Scenario 10 All zones 4747 0.484 0.337 

 



 

 

           49 
Enhancing Non-Motorized Safety by Simulating Non-Motorized Exposure using a 

Transportation Planning Approach 

4.2 Policy Analysis for Non-Motorist Crash Frequency 

Policy scenario analysis for non-motorist crash frequency is presented in this section. The change 

in total crash frequency is evaluated across all scenarios for the pedestrian and bicycle groups of 

road users separately. The computed elasticities for total change in crash frequency are presented 

in Table 4.2. To be sure, in evaluating the change in each scenario, the corresponding change in 

non-motorist demand (as presented in Section 4.1) is also incorporated for evaluating elasticity 

effects for non-motorist crash frequency. The numbers in Table 4.2 may be interpreted as the 

percentage change in the expected total zonal crashes per year due to the change in exogenous 

variable. The following observations can be made based on the elasticity effects presented in 

Table 4.2. 

First, decreasing vehicular traffic volume near CBD locations is likely to reduce pedestrian crashes, 

with a greater impact within the vicinity of the CBD. However, bicycle crashes are likely to increase 

by about 3%. However, the number of bicycle–motor vehicle crashes is likely to decrease within 

the vicinity of CBD with a greater reduction in vehicular volume. Second, the hypothetical scenario 

of sidewalk length shows that providing walking facilities has the potential to improve pedestrian 

safety. On the other hand, bicycle crashes are likely to be high for increasing sidewalk length – 

perhaps indicating greater exposure. Third, reduction in speed and restrictions in traffic lanes 

decrease pedestrian crashes. On the other hand, restrictions in traffic lanes increase bicycle 

crashes by about 4%.  

Recommendations: It is a well-known fact that non-motorist safety tends to decrease with 

increasing non-motorist exposure, and only after a certain level of exposure (when traffic 

becomes familiar with the higher number of non-motorists) does the safety tend to increase. 

From our policy analysis, we can see that non-motorist-friendly infrastructure has a mixed effect 

on non-motorist safety. Therefore, it is imperative that policy implications for improving non-

motorist safety be identified by considering all known exogenous elements in identifying the 

appropriate tools. In general, restricting vehicular volume in a targeted zone would improve non-

motorist safety.    

 

Table 4.2 – Elasticity effects for non-motorist crash frequency 

Scenarios Study region Number of zones Pedestrian Bicycle 

Scenario 1 

All zones 4747 -0.630 3.144 

Zones within 2-mile buffer 

of CBD 
703 -3.266 -2.889 

Scenario 2 

All zones 4747 -0.437 3.622 

Zones within 2-mile buffer 

of CBD 
703 -2.120 -0.274 

Scenario 3 All zones 4747 -0.482 3.554 
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Zones within 4-mile buffer 

of CBD 
1375 -1.280 1.680 

Scenario 4 

All zones 4747 -0.340 3.935 

Zones within 6-mile buffer 

of CBD 
1985 -0.589 3.281 

Scenario 5 All zones 4747 -1.360 4.367 

Scenario 6 All zones 4747 0.985 4.436 

Scenario 7 All zones 4747 -0.143 0.000 

Scenario 8 All zones 4747 -0.150 0.000 

Scenario 9 All zones 4747 -0.138 4.436 

Scenario 10 All zones 4747 -0.143 4.415 

 

4.3 Policy Analysis for Non-Motorist Crash Severity Proportions 

Policy scenario analysis for non-motorist crash severity proportions is presented in this section. 

The change in total crash severity proportions is evaluated across all scenarios for the pedestrian 

and bicycle groups of road users separately. The computed elasticities for total change in crash 

frequency are presented in Table 4.3. To be sure, in evaluating the change in each scenario, the 

corresponding change in non-motorist demand (as presented in Section 4.1) is also incorporated 

for evaluating elasticity effects for non-motorist crash severity proportions. The numbers in Table 

4.3 may be interpreted as the percentage change in the expected total zonal crash severity 

proportion across different severity levels due to the change in exogenous variable. The following 

observations can be made based on the elasticity effects presented in Table 4.3. 

First, decreasing vehicular traffic volume near CBD locations is likely to reduce non-motorist crash 

severity, with greater impact within the vicinity of the CBD. However, the impact on the 

pedestrian mode is much higher than the impact on the bicycle mode. Second, the decrease in 

pedestrian fatal crash severity proportions is about 1% for increasing sidewalk length, reducing 

speed and restricting traffic lanes. The contributions of these measures on bicycle crash severity 

are less pronounced relative to pedestrian modes. 

Recommendations: From our policy analysis, we can see that non-motorist-friendly infrastructure 

has a positive effect on non-motorist safety by reducing severe crashes. Therefore, we can argue 

that zonal-level implications of non-motorist-friendly infrastructures and environment should be 

implemented to reduce the consequences of non-motorist crash severity outcomes. 

 

Table 4.3 – Elasticity effects for non-motorist crash severity proportions 

Pedestrian 
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Scenarios Study region 
Number 

of zones 
O* C B A K 

Scenario 1 

All zones 4747 6.082 1.735 -0.505 -2.658 -4.967 

Zones with 2-mile 

buffer of CBD 
703 10.888 0.358 -1.268 -2.922 -4.687 

Scenario 2 

All zones 4747 6.074 1.733 -0.504 -2.655 -4.963 

Zones with 2-mile 

buffer of CBD 
703 10.851 0.349 -1.263 -2.906 -4.664 

Scenario 3 

All zones 4747 6.075 1.734 -0.504 -2.655 -4.963 

Zones with 4-mile 

buffer of CBD 
1375 7.432 1.014 -0.807 -2.653 -4.550 

Scenario 4 

All zones 4747 6.068 1.732 -0.503 -2.653 -4.960 

Zones with 6-mile 

buffer of CBD 
1985 6.688 1.365 -0.690 -2.751 -4.891 

Scenario 5 All zones 4747 2.514 0.154 -0.294 -0.675 -1.013 

Scenario 6 All zones 4747 2.703 0.191 -0.321 -0.740 -1.111 

Scenario 7 All zones 4747 2.685 0.193 -0.318 -0.738 -1.107 

Scenario 8 All zones 4747 2.742 0.204 -0.326 -0.758 -1.135 

Scenario 9 All zones 4747 2.628 0.181 -0.310 -0.717 -1.077 

Scenario 10 All zones 4747 2.644 0.185 -0.312 -0.723 -1.085 

Bicycle 

Scenarios Study region 
Number 

of zones 
PDO MI NI-In I-in Ft 

Scenario 1 

All zones 4747 0.142 0.023 -0.034 -0.062 -0.066 

Zones with 2-mile 

buffer of CBD 
703 0.033 0.011 -0.009 -0.028 -0.045 

Scenario 2 

All zones 4747 0.142 0.023 -0.034 -0.062 -0.066 

Zones with 2-mile 

buffer of CBD 
703 0.033 0.011 -0.009 -0.028 -0.045 

Scenario 3 

All zones 4747 0.142 0.023 -0.034 -0.062 -0.066 

Zones with 4-mile 

buffer of CBD 
1375 0.024 0.007 -0.007 -0.016 0.003 
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Scenario 4 

All zones 4747 0.142 0.023 -0.034 -0.062 -0.066 

Zones with 6-mile 

buffer of CBD 
1985 -0.005 0.000 0.001 0.000 0.015 

Scenario 5 All zones 4747 0.134 0.023 -0.033 -0.060 -0.063 

Scenario 6 All zones 4747 0.149 0.024 -0.036 -0.065 -0.071 

Scenario 7 All zones 4747 0.000 0.000 0.000 0.000 0.000 

Scenario 8 All zones 4747 0.000 0.000 0.000 0.000 0.000 

Scenario 9 All zones 4747 0.143 0.024 -0.034 -0.063 -0.068 

Scenario 10 All zones 4747 0.142 0.024 -0.034 -0.063 -0.066 

*O=property damage only, C=minor injury, B=non-incapacitating injury, A=incapacitating injury, 

K=fatal   

 

4.4 Future Year Demand Predictions 

In order to demonstrate the implications from the estimated demand models, we also generate 

the predicted demand matrices for the year 2015. Specifically, we have estimated predicted origin 

demand, predicted destination demand and predicted total demand for the year 2015. These 

matrices are presented in Table 4.4 at the county level. From Table 4.4 we can see that overall 

bicycle demand has increased from 2010 to 2015, but that total pedestrian demand has decreased 

over the same period. These generated demand matrices can be used as non-motorist exposure 

measures for developing a crash prediction model for the year 2015. Similar matrices can be 

generated for any other year. 

 

Table 4.4 – Trip demand matrices by county level for the years 2010 and 2015 

Pedestrian 

C
o

u
n

ty
 

Trip origin demand Trip destination demand Total trip demand 
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0
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0
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%
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154936.5 153610.7 -0.9 149804.8 144628.0 -3.5 304741.3 298238.7 -2.1 
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Fl
ag

le
r 26241.5 24853.4 -5.3 23153.7 22261.3 -3.9 49395.1 47114.6 -4.6 

In
d

ia
n

 

R
iv

e
r 

12066.8 12169.7 0.9 11826.2 11663.3 -1.4 23892.9 23833.0 -0.3 

La
ke

 67309.3 68943.5 2.4 66545.9 65799.1 -1.1 133855.2 134742.6 0.7 

M
ar

io
n

 

95199.9 93593.9 -1.7 89602.9 89575.3 0.0 184802.8 183169.2 -0.9 

O
ra

n
ge

 

348163.9 342918.6 -1.5 355169.8 349371.2 -1.6 703333.7 692289.8 -1.6 

O
sc

e
o

la
 

67651.6 68006.6 0.5 65181.7 64571.8 -0.9 132833.3 132578.4 -0.2 

P
o

lk
 

185959.9 195780.4 5.3 195543.4 205340.1 5.0 381503.4 401120.4 5.1 

Se
m

in
o

le
 

75690.1 79112.2 4.5 79212.2 80228.2 1.3 154902.3 159340.4 2.9 

Su
m

te
r 32272.8 30488.9 -5.5 26598.9 25489.9 -4.2 58871.7 55978.8 -4.9 

V
o

lu
si

a
 

189987.7 189005.7 -0.5 174051.2 172072.2 -1.1 364038.8 361077.9 -0.8 

To
ta

l 

1255480.0 1258483.6 0.2 1236691.0 1231000.4 -0.5 2492171.0 2489483.9 -0.1 

Bicycle 
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C
o

u
n

ty
 

Trip origin demand Trip destination demand Total trip demand 
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21663.6 21822.8 0.7 23172.9 23344.3 0.7 44836.5 45167.1 0.7 

Fl
ag

le
r 2940.3 2964.9 0.8 2634.0 3031.2 15.1 5574.4 5996.1 7.6 

In
d

ia
n

 

R
iv

e
r 

1735.3 1734.3 -0.1 999.5 998.4 -0.1 2734.7 2732.8 -0.1 

La
ke

 10784.3 10676.6 -1.0 9977.6 9774.7 -2.0 20761.9 20451.2 -1.5 

M
ar

io
n

 

5238.3 5448.9 4.0 4226.3 4344.1 2.8 9464.5 9793.0 3.5 

O
ra

n
ge

 

57661.9 60551.9 5.0 64084.7 68918.9 7.5 121746.7 129470.8 6.3 

O
sc

e
o

la
 

4026.1 4308.8 7.0 3875.6 3974.1 2.5 7901.8 8282.9 4.8 

P
o

lk
 

10931.1 11589.5 6.0 10687.7 11851.7 10.9 21618.8 23441.2 8.4 

Se
m

in
o

le
 

12179.4 12529.5 2.9 11558.9 11903.0 3.0 23738.3 24432.5 2.9 
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Su
m

te
r 553.1 614.6 11.1 817.9 1019.8 24.7 1371.0 1634.4 19.2 

V
o

lu
si

a
 

37958.0 38199.6 0.6 39924.9 41457.9 3.8 77882.8 79657.5 2.3 

To
ta

l 

165671.4 170441.4 2.9 171960.0 180618.0 5.0 337631.3 351059.4 4.0 
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5 Conclusions 

The current research effort proposed an approach to identify and incorporate non-motorist 

exposure for developing macro-level crash models both in terms of total crashes and crashes by 

different severity levels.  We developed non-motorist demand models and estimated aggregate-

level crash frequency and severity models for non-motorized modes of transportation by 

incorporating the exposure measures predicted from the estimated demand models. The 

validation exercise performed provided evidence that the estimated models are reasonable. 

Further, the implications of the estimated models are demonstrated by analyzing several policy 

scenario analyses. The research methodology as proposed in our study recognizes that zonal-level 

attributes are likely to influence non-motorist exposure. At the same time, non-motorist exposure 

along with the zonal-level attributes are critical factors in developing non-motorist safety models.  

5.1 Limitations 

Our study is not without limitations. In our study approach, we evaluated non-motorist demand 

by using the NHTS database at an aggregate level, which is not readily transferable for developing 

a micro-level model. It might be interesting to generate a micro-level trip demand model to 

identify non-motorist exposure at a corridor level.   

5.2 Future Directions 

With respect to future research, it might be useful to forecast non-motorist safety by employing 

non-motorist demand generated for a future year.  
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